

Possible molecular bound states: $\Lambda_c N \& \Lambda_c \Lambda_c$

Yan-Rui Liu, Wakafumi Meguro, Makoto Oka

Tokyo Institute of Technology, Japan

"New Hadrons" Workshop 2010, RIKEN, Japan (28 Feb.- 1 Mar., 2011)

Content

Introduction

- ► Hadronic molecule: loosely bound state of hadrons [inter-hadron distance]>[confinement size] [e.g. deuteron(NN), triton(NNN), hypertriton(∧ pn)
- ► Exotic heavy quark mesons (near-threshold states): $D_{sJ}(2317)$, X(3872), Y(3940), X(4260), $Z^+(4430)$, ... ⇒ heavy quark molecule problem e.g. DK, $D\bar{D}^*$, $D^*\bar{D}^*$, DD_1 , D^*D_1 , ...
- Kinetic term vs. potential

$$H = \frac{p^2}{2\mu} + V(r)$$

 μ larger \Rightarrow advantageous for bound states.

Introduction

- Hidden charm hadron-hadron states
 - Possible two-body bound states
 - $\begin{array}{ll} (c\bar{q})(\bar{c}q), \ (\bar{c}\bar{q}\bar{q})(cqq), \ (\bar{c}q)(cqq) & D\bar{D}^*, \ \Lambda_c\bar{\Lambda}_c, \ \bar{D}\Lambda_c, \ \dots \\ (c\bar{c})(q\bar{q})..., \ (c\bar{c})(qqq)... & J/\psi\omega, \ J/\psi N, \ \dots \end{array}$
 - Nuclear-bound charmonium or hadro-charmonium
- Charmed bound states:
 - ▶ $\overline{D} N$, D N: Yasui, X. Liu, J. He, Haidenbauer, Meissner, ...
 - Λ_c / Σ_c hypernuclei: Dover, Bando, Tsushima, ...
 - ▶ Two body $\Sigma_c N$, $\Xi_{cc} N$, $\Sigma_c \Sigma_c$, ...: Riska [NPA 750, 337 (2005)]
- Λ_c : lowest charmed baryon
- ► Detailed studies of $\Lambda_c N$ and $\Lambda_c \Lambda_c$: $\Lambda_c N - \Sigma_c N - \Sigma_c^* N \& \Lambda_c \Lambda_c - \Sigma_c \Sigma_c - \Sigma_c^* \Sigma_c^* - \Sigma_c \Sigma_c^*$: heavy quark spin symmetry \Rightarrow coupled channel effects may be important

The systems ($\Lambda_c N \& \Lambda_c \Lambda_c$)

► Λ_c : 2286.46 MeV, N: 938 MeV Σ_c : 2453 MeV, Δ : 1232 MeV Σ_c^* : 2518 MeV

Channels	1	2	3	4	5	6	7
$J^{P} = 0^{+}$	$\Lambda_c N(^1S_0)$	$\Sigma_c N(^1S_0)$	$\sum_{c}^{*} N({}^{5}D_{0})$				
$J^{P} = 1^{+}$	$\Lambda_c N(^3S_1)$	$\Sigma_c N(^3S_1)$	$\Sigma_c^* N(^3S_1)$	$\Lambda_c N(^3D_1)$	$\Sigma_c N(^3D_1)$	$\Sigma_c^* N(^3 D_1)$	$\Sigma_c^* N({}^5D_1)$

TABLE I: The S-wave $\Lambda_c N$ states and the channels which couple to them.

Channels	1	2	3	4	5
$J^P = 0^+$	$\Lambda_c \Lambda_c ({}^1S_0)$	$\Sigma_c \Sigma_c ({}^1S_0)$	$\Sigma_c^* \Sigma_c^* ({}^1S_0)$	$\Sigma_c^* \Sigma_c^* ({}^5 D_0)$	$\Sigma_c \Sigma_c^* ({}^5D_0)$

TABLE II: The S-wave $\Lambda_c \Lambda_c$ states and the channels which couple to them.

For loosely bound molecule, short-range D meson exchange small, $\Xi_{cc}N$ neglected.

The systems: thresholds & coupled channel effects

The model

Introduction

Framework

►

- Heavy quark limit
- One-meson-exchange potential model (OMEP): π , σ , ρ , ω

 $B_1, B_2: \Lambda_c^+, \Sigma_c, \Sigma_c^*$ (For $\Lambda_c \Lambda_c, N \to B_1, B_2$)

Baryon:heavy quark symmetry π :chiral symmetry ρ, ω :hidden local symmetry

Heavy quark symmetry for (qqQ) baryon

$$B_{\bar{3}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}, \quad B_6 = \begin{pmatrix} \Sigma_c^{++} & \frac{1}{\sqrt{2}}\Sigma_c^+ & \frac{1}{\sqrt{2}}\Xi_c^{\prime+} \\ \frac{1}{\sqrt{2}}\Sigma_c^+ & \Sigma_c^0 & \frac{1}{\sqrt{2}}\Xi_c^{\prime0} \\ \frac{1}{\sqrt{2}}\Xi_c^{\prime+} & \frac{1}{\sqrt{2}}\Xi_c^{\prime0} & \Omega_c^0 \end{pmatrix}$$
$$B_6^* = \begin{pmatrix} \Sigma_c^{*++} & \frac{1}{\sqrt{2}}\Sigma_c^{*+} & \frac{1}{\sqrt{2}}\Xi_c^{*+} \\ \frac{1}{\sqrt{2}}\Sigma_c^{*+} & \Sigma_c^{*0} & \frac{1}{\sqrt{2}}\Xi_c^{*\prime+} \\ \frac{1}{\sqrt{2}}\Xi_c^{*\prime+} & \frac{1}{\sqrt{2}}\Xi_c^{*\prime0} & \Omega_c^{*0} \end{pmatrix}$$

Heavy quark spin symmetry $\Rightarrow B_6$ and B_6^* degenerate

► Superfield: $S_{\mu} = B_{\mu}^* + \delta \frac{1}{\sqrt{3}} (\gamma_{\mu} + v_{\mu}) \gamma^5 B_6 \ [\sigma_h^z S_{\mu} = S_{\mu} \Rightarrow \delta = -1]$

Chiral symmetry & hidden local symmetry Definitions

$$\begin{split} \Pi &= \sqrt{2} \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}, \\ V^{\mu} &= i\frac{g_{V}}{\sqrt{2}} \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}^{\mu}, \\ A_{\mu} &= \frac{i}{2} [\xi^{\dagger}(\partial_{\mu}\xi) + (\partial_{\mu}\xi)\xi^{\dagger}], \quad \Gamma_{\mu} = \frac{1}{2} [\xi^{\dagger}(\partial_{\mu}\xi) - (\partial_{\mu}\xi)\xi^{\dagger}], \\ \xi &= \exp[\frac{i\Pi}{2f}], \quad F_{\mu\nu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu} + [V_{\mu}, V_{\nu}], \\ D_{\mu}B_{\bar{3}} &= \partial_{\mu}B_{\bar{3}} + \Gamma_{\mu}B_{\bar{3}} + B_{\bar{3}}\Gamma^{T}_{\mu}, \\ D_{\mu}S_{\nu} &= \partial_{\mu}S_{\nu} + \Gamma_{\mu}S_{\nu} + S_{\nu}\Gamma^{T}_{\mu}. \end{split}$$

Effective Lagrangian

$$\mathcal{L}_{\mathcal{B}} = \mathcal{L}_{B_{\bar{3}}} + \mathcal{L}_{S} + \mathcal{L}_{int}, \qquad (1)$$

$$\mathcal{L}_{B_{\bar{3}}} = \frac{1}{2} \operatorname{tr}[\bar{B}_{\bar{3}}(iv \cdot D)B_{\bar{3}}] + i\beta_{B}\operatorname{tr}[\bar{B}_{\bar{3}}v^{\mu}(\Gamma_{\mu} - V_{\mu})B_{\bar{3}}] + \ell_{B}\operatorname{tr}[\bar{B}_{\bar{3}}\sigma B_{\bar{3}}] \qquad (2)$$

$$\mathcal{L}_{S} = -\operatorname{tr}[\bar{S}^{\alpha}(iv \cdot D - \Delta_{B})S_{\alpha}] + \frac{3}{2}g_{1}(iv_{\kappa})\epsilon^{\mu\nu\lambda\kappa}\operatorname{tr}[\bar{S}_{\mu}A_{\nu}S_{\lambda}] + i\beta_{S}\operatorname{tr}[\bar{S}_{\mu}v_{\alpha}(\Gamma^{\alpha} - V^{\alpha})S^{\mu}] + \lambda_{S}\operatorname{tr}[\bar{S}_{\mu}F^{\mu\nu}S_{\nu}] + \ell_{S}\operatorname{tr}[\bar{S}_{\mu}\sigma S^{\mu}] \qquad (3)$$

$$\mathcal{L}_{S} = -\operatorname{tr}[\bar{S}^{\mu}A_{\beta}B_{\beta}] + i\sum_{\sigma}\epsilon^{\mu\nu\lambda\kappa}v_{\sigma}\operatorname{tr}[\bar{S}_{\mu}E_{\sigma}] + h.c. \qquad (4)$$

$$\mathcal{L}_{int} = g_4 \operatorname{tr}[\bar{S}^{\mu} A_{\mu} B_{\bar{3}}] + i\lambda_I \epsilon^{\mu\nu\lambda\kappa} v_{\mu} \operatorname{tr}[\bar{S}_{\nu} F_{\lambda\kappa} B_{\bar{3}}] + h.c., \qquad (4)$$

$$\mathcal{L}_{N} = -\frac{g_{A}}{2f}\bar{N}\gamma^{\mu}\gamma^{5}\partial_{\mu}(\pi^{i}\tau^{i})N - h_{\sigma}\bar{N}\sigma N -h_{V}\bar{N}\gamma^{\mu}(\tau^{i}\rho^{i}_{\mu} + \omega_{\mu})N - h_{T}\bar{N}\sigma^{\mu\nu}\partial_{\mu}(\tau^{i}\rho^{i}_{\nu} + \omega_{\nu})N.$$

Couping	Quark Model	Chiral Multiplet	VMD	QSR	Decay
g_1	1.00				
g_4	1.06			0.94	0.999
ℓ_B	-3.65	$-\frac{\Delta M}{2f_{\pi}} \approx -3.1$			
ℓ_S	7.30	$\frac{\overline{\Delta}M}{f_{\pi}} \approx 6.2$			
$(\beta_B g_V)$	-6.0		≈ -5.04		
$(\beta_S g_V)$	12.0		≈ 10.08		
$(\lambda_S g_V)$	$19.2 { m GeV}^{-1}$			$21.0, 13.5 \text{ GeV}^{-1}$	
$(\lambda_I g_V)$	$-6.8~{ m GeV}^{-1}$				
g_A	1.25				
h_{σ}	10.95			14.6	
h_V	3.0				
h_T	6.4 GeV $^{-1}$				

Table: The coupling constants in different methods. For the quark model estimation, we use $g_A^q = 0.75$, $g_\sigma^q = 3.65$, $g_\rho^q = 3.0$, and $f_\rho^q = 0.0$.

Potentials

Approximations in deriving non-relativistic potentials:
 (1). For Λ_cN, q⁰ = 0, do not consider term like ^{q⁰}/_{M_N} × ...
 (2). Neglect O(¹/_{M_{Λc}}) correction. For Λ_cN, keep O(¹/_{M_N²}) term.
 (3). Neglect δ-functional terms.

$$\begin{split} V_{\pi} &= C_{\pi}(i,j) \frac{m_{\pi}^{3}}{24\pi f_{\pi}^{2}} \Big\{ \vec{\mathcal{O}}_{1} \cdot \vec{\mathcal{O}}_{2} Y_{1}(m_{\pi},\Lambda,r) + \mathcal{O}_{ten} H_{3}(m_{\pi},\Lambda,r) \Big\}, \\ V_{\sigma} &= C_{\sigma}(i) \frac{m_{\sigma}}{16\pi} \Big\{ 4Y_{1}(m_{\sigma},\Lambda,r) + \vec{L} \cdot \vec{\sigma}_{2} \left(\frac{m_{\sigma}}{M_{N}} \right)^{2} Z_{3}(m_{\sigma},\Lambda,r) \Big\}, \\ V_{\rho} &= C_{\rho 1}(i,j) \frac{m_{\rho}}{32\pi} \Big\{ 8Y_{1}(m_{\rho},r) + (1 + \frac{4M_{N}h_{T}}{h_{V}}) \frac{m_{\rho}^{2}}{M_{N}^{2}} \Big[Y_{1}(m_{\rho},r) - 2\vec{L} \cdot \vec{\sigma}_{2} Z_{3}(m_{\rho},r) \Big] \\ &+ C_{\rho 2}(i,j) \frac{m_{\rho}^{3}}{36\pi M_{N}} \Big\{ (1 + \frac{2M_{N}h_{T}}{h_{V}}) \Big[2\vec{\mathcal{O}}_{1} \cdot \vec{\mathcal{O}}_{2} Y_{1}(m_{\rho},r) - \mathcal{O}_{ten} H_{3}(m_{\rho},\Lambda,r) \Big] \\ &- 6\vec{L} \cdot \vec{\mathcal{O}}_{1} Z_{3}(m_{\rho},r) \Big\}, \end{split}$$

Potentials

$$\begin{split} Y(x) &= \frac{e^{-x}}{x}, \quad Z(x) = (\frac{1}{x} + \frac{1}{x^2})Y(x), \quad H(x) = (1 + \frac{3}{x} + \frac{3}{x^2})Y(x), \\ Y_1(m,\Lambda,r) &= Y(mr) - \left(\frac{\Lambda}{m}\right)Y(\Lambda r) - \frac{\Lambda^2 - m^2}{2m\Lambda}e^{-\Lambda r}, \\ Y_3(m,\Lambda,r) &= Y(mr) - \left(\frac{\Lambda}{m}\right)Y(\Lambda r) - \frac{(\Lambda^2 - m^2)\Lambda}{2m^3}e^{-\Lambda r}, \\ Z_3(m,\Lambda,r) &= Z(mr) - \left(\frac{\Lambda}{m}\right)^3Z(\Lambda r) - \frac{(\Lambda^2 - m^2)\Lambda}{2m^3}Y(\Lambda r), \\ H_3(m,\Lambda,r) &= H(mr) - \left(\frac{\Lambda}{m}\right)^3H(\Lambda r) - \frac{(\Lambda^2 - m^2)\Lambda}{2m^3}Y(\Lambda r) - \frac{(\Lambda^2 - m^2)\Lambda}{2m^3}e^{-\Lambda r}. \end{split}$$

 $\mathsf{Cutoff}\ \Lambda:\ F(q) = \tfrac{\Lambda^2 - m^2}{\Lambda^2 - q^2}, \ [\mathsf{Free \ parameters:}\ \Lambda_{\pi},\ \Lambda_{\sigma},\ \Lambda_{\rho},\ \Lambda_{\omega}]$

Numerical results

Introduction

2 The model

 $\Lambda_c N$: 0⁺ Diagonal potentials with $\Lambda_{\pi} = \Lambda_{\sigma} = \Lambda_{vec} = 1$ GeV

 $\Lambda_c N$: 0⁺

Transition potentials with $\Lambda_{\pi} = \Lambda_{\sigma} = \Lambda_{vec} = 1$ GeV

 $\Lambda_c N: 0^+$

Variational method

$$OPEP \begin{cases} w/o \\ w/ \end{cases}$$

$$OMEP \begin{cases} \Lambda_{\pi} = \Lambda_{\sigma} = \Lambda_{\text{vec}} = \Lambda_{\text{com}} \begin{cases} w/o \\ w/ \end{cases} \notin \text{common cutoff} \\ \alpha_{\pi} = \alpha_{\sigma} = \alpha_{\rho} = \alpha_{\omega} = \alpha \begin{cases} w/o \\ w/ \end{cases} \notin \text{scaled cutoff} \end{cases}$$

OPEP: one-pion-exchange potential OMEP: one-meson-exchange potential w/o: without channel coupling w/: with channel coupling $\Lambda_{\rm exch} = m_{\rm exch} + \alpha \Lambda_{QCD}$

Only present OPEP results

$\Lambda_c N$: 0⁺ OPEP model:

$\Lambda_c N \text{: } 1^+ \\ \textbf{OPEP model (compare with } 0^+ \textbf{)}$

J^P		$\Lambda_c N$ (S-wave)	$\Lambda_c N - \Sigma_c N - \Sigma_c^* N$
0^{+}	OPEP (Λ)	×	[1.367: 13.60 , 1.38]
	OMEP (Λ)	[0.900: 1.24, 3.86]	[0.900: <mark>13.60</mark> , 1.46]
	OMEP (α)	[1.533: 0.25, 8.13]	[1.533: 13.57, 1.37]
1^{+}	OPEP (Λ)	×	[1.353: 13.54, 1.40]
	OMEP (Λ)	[0.900: 1.24, 3.86]	[0.900: 13.49 , 1.47]
	OMEP (α)	[1.618: 0.80, 4.72]	[1.618: 13.47, 1.39]

Table: Comparison among different cases. The meaning of the numbers are [cutoff $\Lambda_{\rm com}$ in GeV or dimensionless α : B.E. in MeV, RMS radius in fm]. ($\Lambda = m_{meson} + \alpha \Lambda_{QCD}$)

For the coupled channel calculation, one may get similar binding energies (and the corresponding RMS radiuses) in the OMEP model and in the OPEP model.

 $\Lambda_c \Lambda_c \ (J^P = 0^+)$: Diagonal potentials with $\Lambda_{\pi} = 1$ GeV OPEP model

 $\Lambda_c \Lambda_c \ (J^P = 0^+)$: Transition potentials with $\Lambda_{\pi} = 1$ GeV OPEP model

 $\Lambda_c \Lambda_c \ (J^P = 0^+)$: Transition potentials with $\Lambda_{\pi} = 1$ GeV (con't) OPEP model

24/36

 $\Lambda_c \Lambda_c \ (J^P = 0^+)$: Transition potentials with $\Lambda_{\pi} = 1$ GeV (con't) OPEP model

► Tensor force is important.

$\Lambda_c \Lambda_c \left(J^P = 0^+ \right)$

▶ Without channel coupling: No S-wave $\Lambda_c \Lambda_c$ and $\Sigma_c \Sigma_c$ binding solutions

	Λ (GeV)	1.1	1.3	1.5	1.7
	B.E. (MeV)	0.23	9.22	31.83	72.03
$\Sigma_c^* \Sigma_c^*$	$\sqrt{\langle r^2 angle}$ (fm)	5.9	1.3	0.9	0.7
	Prob. (%)	(94.8, 5.2)	(88.1, 11.9)	(86.3, 13.7)	(85.2, 14.8)

With channel coupling

Λ (GeV)	1.0	1.1	1.2	1.3
B.E. (MeV)	3.39	14.45	35.44	68.37
$\sqrt{\langle r^2 angle}$ (fm)	2.0	1.2	0.9	0.7
Prob. (%)	(97.4/0.2/0.2	(94.3/0.5/0.5	(90.7/1.1/1.0	(86.8/1.8/1.8
	/0.6/1.6)	/1.3/3.4)	/2.0/5.2)	/2.6/7.0)
D-wave prob.	2.2%	4.7%	7.2%	9.6%

 $\Lambda=1.0\sim 1.2~{\rm GeV}$ are molecule-like but $\Lambda=1.3\sim 1.5~{\rm GeV}$ may be beyond our model.

$$\Lambda_c \Lambda_c \left(J^P = 0^+ \right)$$

Discussion

- Channel coupling is important in binding charmed baryons
- ► For $\Lambda_c N$, solutions almost spin-independent. How about $\Lambda_c \Sigma_c$, $\Lambda_c \Lambda$, $\Lambda_c \Sigma$, $\Lambda_c \Delta$, or ... ?
- Cutoff dependence including δ -functional terms in OPEP model

	Λ (GeV)		0.75		0.80		0.85	
	$E_{J=0} (MeV) \sqrt{\langle r^2 \rangle} (fm)$		0.1		14.8		43	.9
$\Lambda_c N$			10.8		1.1		0.7	
	Prob. (%)		(93.3/6.6/0.1)		(51.0/49.0/0.0)		(37.9/62.1/0.0)	
	Λ (GeV)		0	0.70 0.		75		
	B.E. (Me $\Lambda_c \Lambda_c$ $\sqrt{\langle r^2 \rangle}$ (1		. (MeV)	3	.99	32.	.77	
			$\overline{2}$ (fm) 1.		1.7 0		7	
		Prob. (%)		(91.4	/4.0/4.2	(71.8/13	3.3/14.5	
				/0.1	1/0.3)	/0.1	/0.3)	
		D-wave prob.		0	.4%	0.4	4%	

▶ Possible places to search for $\Lambda_c N$ and $\Lambda_c \Lambda_c$: GSI-Fair, J-PARC, RHIC, BELLE

Summary

- Construct Lagrangian reflecting heavy quark, chiral, and hidden local symmetries and determine the coupling constants with various methods
- Channel coupling is important for possible molecule-like bound states $\Lambda_c N$ (J = 0, 1) and $\Lambda_c \Lambda_c$ (J = 0). If they exist, should be stable.
- ▶ Preliminary: Λ_cΣ_c (I = 1, J^P = 0⁺, 1⁺), Σ_cΣ_c (I = 2, J^P = 0⁺) may also form molecule-like bound states. But such states decay and need further study.

Thank you !

Backup slides

$\Lambda_c N$: 0⁺ OMEP model ($\Lambda_{com} \& \alpha$)

 $\Lambda_c N$: 1⁺ OMEP model (Λ_{com} , compare with 0⁺)

$\Lambda_c N$: 1⁺ OMEP model (α , compare with 0⁺)

- Can use strong decay:

$$\Gamma(\Sigma_c^* \to \Lambda \pi) = \frac{g_4^2}{12\pi f_\pi^2} \frac{M_{\Lambda_c}}{M_{\Sigma_c^*}} |\vec{p}_\pi^3| \Rightarrow g_4 = 0.999$$

Can use Quark Model:

$$\mathcal{L}_{q} = -\frac{g_{A}^{q}}{2f}\bar{\psi}\gamma^{\mu}\gamma^{5}\partial_{\mu}(\pi^{i}\tau^{i})\psi - g_{\sigma}^{q}\bar{\psi}\sigma\psi - g_{\rho}^{q}\bar{\psi}\gamma^{\mu}(\rho_{\mu}^{i}\tau^{i}+\omega_{\mu})\psi - f_{\rho}^{q}\bar{\psi}\sigma^{\mu\nu}\partial_{\mu}(\rho_{\nu}^{i}\tau^{i}+\omega_{\nu})\psi.$$
(5)

► Can use chiral multiplet assumption: $SU(3)_L \times SU(3)_R$ chiral partners: $B_{\bar{3}} \sim \tilde{B}_{\bar{3}}$, $B_6 \sim \tilde{B}_6$ $\Rightarrow \ell_B = -\frac{M_{\tilde{\Lambda}_c} - M_{\Lambda_c}}{2f_{\pi}} \sim -3.1$, $\ell_S = \frac{M_{\tilde{\Sigma}_c} - M_{\Sigma_c}}{f_{\pi}} \sim 6.2$

Can use vector meson dominance (VMD):

Phase convention

$$\Rightarrow \begin{pmatrix} H_{11} & H_{12} & H_{13} & H_{14} & H_{15} & \cdots \\ H_{22} & H_{23} & H_{24} & H_{25} & \cdots \\ H_{33} & H_{34} & H_{35} & \cdots \\ H_{44} & H_{45} & \cdots \\ H_{55} & \cdots \end{pmatrix}, \qquad (6)$$

• Phases of g_4 and λ_I do not matter.