Charm quark system on the physical point in 2 + 1 flavor lattice QCD

arXiv:1103.xxxx

Yusuke Namekawa(Univ. of Tsukuba) for the PACS-CS collaboration

S.Aoki, K-I.Ishikawa, N.Ishizuka, T.Izubuchi, K.Kanaya, Y.Kuramashi, Y.Namekawa, M.Okawa,

Y.Taniguchi, A.Ukawa, N.Ukita, T.Yamazaki, T.Yoshie

Contents

1	Introduction		
2	Sim	ulation setup	6
3	Results		
	3.1	Charmonium spectrum	7
	3.2	Charm-strange spectrum	8
	3.3	Charm-ud spectrum	Ç
	3.4	Charm quark mass and CKM matrix elements	10

4 Summary

12

1 Introduction

[Progress of lattice QCD]

Simulations become realistic, thanks to the development of computers and algorithms.

- $N_f = 2 + 1$ full QCD is performed, which includes dynamical effects of up-down and strange quarks.
- Dynamical up-down and strange quark masses can be set to their physical values (i.e. m_π = 135 MeV).
 ← So far, up-down quark masses are higher than their physical value, because of the computational cost.

[Progress of lattice QCD(continued)]

Light hadron spectrum has been reproduced within 5% accuracy. \rightarrow As a next step, we move on to the heavy quark system.

 $N_f = 2 + 1, \ a^{-1} = 2.2 \ \text{GeV}$

PACS-CS,2010

[Problem of the heavy quark system on the lattice]

So far, lattice QCD fails to explain the charmonium hyperfine splitting m_{J/ψ} − m_{η_c}.
 → We try to solve this problem using the N_f = 2+1 lattice QCD

on the physical point.

2 Simulation setup

We perform a $N_f = 2 + 1$ full QCD simulation of the charm quark system on the physical point using a relativistic heavy quark formalism.

- Action : RG improved gauge + O(a) improved Wilson fermion for light sea quarks + relativistic heavy quark for valence charm quark
- Lattice size : $32^3 \times 64 \ (L = 3 \text{ fm}, a^{-1} = 2.2 \text{ GeV} \ (\beta = 1.90))$
- Sea quark masses : on the physical point (i.e. $m_{\pi} = 135 \text{ MeV}$)
- Inputs : m_{π}, m_K, m_{Ω} for $m_{ud}, m_s, a; \overline{m}(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ for m_{charm}

$m_{ud}^{\overline{\mathrm{MS}}}(\mu = 2\mathrm{GeV})[\mathrm{MeV}]$	$m_s^{\overline{\mathrm{MS}}}(\mu = 2\mathrm{GeV})[\mathrm{MeV}]$	N_{conf} (MD time)
3	93	80 (2000)

3 <u>Results</u>

3.1 Charmonium spectrum

- Charmonium spectrum is reproduced well except for the hyperfine splitting.
- The hyperfine splitting is slightly underestimated, but $N_f = 2 + 1$ result is much closer to the experiment than those of $N_f = 2, 0$.

 \rightarrow Possible origins of the discrepancy are O(a) effects in RHQ action, disconnected loop contributions, dynamical charm quark effects.

3.2 Charm-strange spectrum

- Lattice QCD reproduces the charm-strange spectrum in 2 σ level, while the standard potential model fails to reproduce D_{s0}^* mass. cf. for model studies of $m_{D_{s0}^*}$, see Matsuki,et al,1997;2007.
- $(D_{s0}^*, D_{s1} \text{ decays are prohibited in our } N_f = 2 + 1 \text{ lattice QCD.})$

3.3 Charm-ud spectrum

- Spectrum is reproduced by lattice QCD.
- $(D^* \text{ decay is prohibited on our lattice of } L = 3 \text{ fm with } a^{-1} = 2 \text{ GeV.})$
- (For unstable particles, D_0 , D_1 , more detailed analysis using Lüscher's formula is needed.)

3.4 Charm quark mass and CKM matrix elements

[Charm quark mass]

- Charm quark mass is determined from axial Ward-Takahashi identity.
- (The renormalization factor is calculated non-perturbatively at the massless point. The mass dependent part is calculated perturbatively.)
- (Charm quark mass is renormalized at $\mu = 1/a$, and evolved to $\mu = m_{charm}^{\overline{\text{MS}}}$ using $N_f = 3$ four-loop beta function.)

[CKM matrix elements]

• CKM matrix elements $|V_{cd}|, |V_{cs}|$ are extracted from our decay constants of charmed and charmed-strange mesons combined with experimental values for the leptonic decay widths of charmed mesons.

4 Summary

We performed a $N_f = 2 + 1$ full QCD simulation of the charm quark system on the physical point at $a^{-1} = 2$ GeV.

- Lattice QCD reproduces mass spectrums of the ground states, except for hyperfine splittings.
 - \diamondsuit Our data of the hyperfine splitting are slightly smaller than the experimental value.

 \rightarrow Possible origins of the discrepancy are O(a) effects in our relativistic heavy quark action, dynamical charm quark effects, and disconnected loop contributions.

• Charm quark mass and CKM matrix elements are determined.

[Future work]

- (Charmed baryon, doubly-charmed baryon, Ω_c have already calculated.)
- We are going to a finer lattice $(a^{-1} = 3 \text{ GeV})$ to take a continuum limit.
- Excited states (such as X(3872)) separating $D\overline{D}$ contamination.

格子量子色力学によるエキゾチックハドロンの数値的研究

研究代表者: 滑川 裕介(筑波大学 計算科学研究センター)

課題番号:22105501(平成22年度~23年度)

研究の目的・概要

本研究では、格子QCDシミュレーションを用いて、 エキゾチックハドロン候補であ る状態の性質解明を行う。 格子QCD計算は第一原理計算であり、計算結果に模型の ような依存性は無い。 実験結果に対し、QCDに基づく統一的な理解が可能である。

平成22年度:研究の進捗と成果

格子重クォーク作用中のパラメータ及び 繰り込み因子を非摂動論的に決定した。 これらの値は、格子上で重クォークを取り扱うために必要である。

決定したパラメータを使用し、チャームクォークを含むハドロンスペクトルを求め た。 我々の計算値は実験値を良く再現する。 標準的なポテンシャル模型では D_{s0}^* 中間子の質量が実験値と大きくずれる。 このため、D_{s0}^* 中間子を通常 のクォーク2体系ではなく、 4つのクォークから成るエキゾチック状態する模型が提 唱されている。 一方、クォーク2体系の演算子を用いた我々の格子QCD計算結果は 1% の精度で実験と無矛盾である。 D_{s0}^* 中間子は通常のクォーク2体系とみなせ る。

上記に加え、チャームクォーク質量、CKM 行列要素を格子QCDを用いて決定した。 これらの値は、素粒子標準理論の確立に必要であるだけでなく、 標準理論を越える物 理の検証にも不可欠であり、重要である。

論文・紀要・会議録:

- "Non-perturbative renormalize Bon of 4μ ark-mass in \$N_f = 2+1\$ QCD with the Schroedinger functional scheme", PACS-CS Collaboration: S. Aoki et al, JHEP 1008 (2010) 101
- "Calculation of \$\rho\$ meson decay width from the PACS-CS

[Relativistic Heavy Quark(RHQ) Action] We employ a RHQ action(Tsukuba-type) for heavy quarks. S.Aoki et al, 2001

- Since the charm quark is not too heavy, relativistic approach is needed.
- RHQ action can control heavy quarks on the lattice. It reduces $O((ma)^n, \forall n)$ to $O(\alpha_s^2 f(ma)(a\Lambda_{QCD}))$ where f is smooth around ma = 0.
 - ♦ For r_s , $C_{SW}^{s,t}$, tadpole improved 1-loop values are used. S.Aoki et al, 2003 $C_{SW}^{s,t}$ are non-perturbatively improved at the massless point, $C_{SW}^{s,t} = C_{SW}(NP, m = 0) - C_{SW}^{s,t}(PT, m = 0) + C_{SW}^{s,t}(PT, m \neq 0).$
 - $\diamondsuit \ \nu$ is non-perturbatively tuned.

$$\begin{split} S_{RHQ} &= \sum_{x,y} \bar{q}(x) D(x,y) q(y), \\ D(x,y) &\equiv \delta_{x,y} - \kappa_{heavy} \left\{ (1 - \gamma_4) U_4(x) \delta_{x+4,y} + (1 + \gamma_4) U_4^{\dagger}(x) \delta_{x,y+4} \right. \\ &+ \sum_i \left((r_s - \nu \gamma_i) U_i(x) \delta_{x+i,y} + (r_s + \nu \gamma_i) U_i^{\dagger}(x) \delta_{x,y+i} \right) \right\} \\ &- \delta_{x,y} \kappa_{heavy} \left\{ C_{SW}^s \sum_{i < j} \sigma_{ij} F_{ij} + C_{SW}^t \sum_i \sigma_{4i} F_{4i} \right\}. \end{split}$$