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Transverse single-spin asymmetry (A4,)
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m In pt+ p collision, 4, is defined as a left-right cross section asymm-
etry of a specific particle or event.

e Why do we measure the 4,7
 Why do we measure the 4,, of very forward neutral particle?
e How can we measure and analyze it?

* RHICf experiment
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Transverse single-spin asymmetry (A4,) h
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m A4, measurement makes us to approach transverse structure of the
proton.

m For non-diffractive particle production, the non-zero 4, has been
explained by

 initial transverse momentum of partons.
e spin-dependent fragmentation.
o higher-order quark-gluon correlation 3/42



Non-diffractive (partonic) process

=2
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Non-diffractive process usually describes the p + p collision as “hard”
scattering between quarks and gluons.

Higher p, > 1 GeV/c with many particles around.

Forward particle production: 2 <5 < 4.
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Diffractive (hadronic) process
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m Diffractive process usually describes the p + p collision as “soft” scatt-
ering in the mesonic degree of freedom.

m Lowerp,< 1 GeV/cwith less particles around (isolated).

m Very forward particle production: 6 <  (almost zero-degree). 5/42



Ay of very forward
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m /s and p; dependences of the neutron 4,s were largely smeared by
insufficient position resolution.
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A, of very forward neutron A

A, vs. P, for leading neutron
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m /S and p, dependences of the neutron 4,5 were largely smeared by
insufficient position resolution.

m RHICf experiment will show precise tendency of the neutron 4, as a

function of p;. -



A, of forward =° h
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In contrast to the neutron, non-zero 4, of forward #° has been
measured by many experiments.

Observed non-zero 4, has been interpreted based on quarks and
gluons’ degrees of freedom theoretically.
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Ay of isolated forward =° N
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m larger 4, was observed by more isolated z° than less isolated one.

m Diffractive process may have a finite contribution to the #z° 4, as well
as non-diffractive one,
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Larger 4, was observed by more isolated z° than less isolated one.

Diffractive process may have a finite contribution to the z° 4, as well
as non-diffractive one,

In this analysis, isolated = energy fraction close to 1.
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Ay of isolated forward =°
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m Llarger 4, was observed with decreasing multiplicity of photons (close
to diffractive process event topology).
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Ay, of very forward #° h
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No detailed measurement ever for the p-< 1 GeV/c.

In June, 2017, the RHICf experiment firstly measured the 4, of
very forward #° (6 < ) to study the role of the diffractive process to
the 7% 4, .
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Cosmic-ray physics N
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m Cosmic-rays above 10'8 eV are called ultrahigh-energy cosmic rays

(UHECRSs).

m Though there has been decades of many efforts, the origin of the
UHECRS has been not understood yet. 13/42



Role of the hadronic interaction model
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Secondary particle < |
production,

m A proper hadronic interaction model needs to precisely predict the
secondary particle production.

m Cross section measurement of the very forward particle production
can be a powerful way to constrain the existing models.
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Relativistic Heavy lon Collider (RHIC) A
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Polarized proton beam
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Polarized proton beam
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Polarized proton beam

HO<L Sona . HO <L Pol. Rb cell ' H+<L ECR - H2

Na ionizer cell

N

Solenoid Partial Siberian Snake

Pol. H- Source

p

LINAC
BOOSTER ) .
5% Helical Partial

4~ Siberian Snake

0"

200 MeV Polarime/lgr «— Internal Polarimeter

Rf Dipole % ¥— pC Polarimeter
25% Helical Partial Siberian Snake

18/42



Beam polarization

Absolute Polarimeter (HT jet)
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How the polarization can be conserved? .

m There is always imperfection in the magnetic field, which can make
depolarization resonance.

m A composition of four superconducting helical dipole magnets ro-
tate the spin direction by 180° in every half revolution.
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Spin pattern

m Due to rotational and parity invariance, A = Or —0p
the left-right asymmetry can be measured N~ % 4
by spin up-down Left gr, T ORr
asymmetry.
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RHIC forward (RHICf) experiment
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RHIC forward (RHICf) experiment
DX

STAR experiment dipole magnet




RHIC forward (RHICf) experiment

STAR experiment dipole magnet




RHICf detector
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m Both towers are composed of 17 tungsten absorbers, 16 GSO-plates,
and 4 GSO-bar layers. Shower trigger
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Two types of z° measurement
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Neutron photon separation N
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m Loy, is defined as the longitudinal depth whose accumulated energy
deposit reaches 90% of total energy deposit in the detector.

m FElectromagnetic shower is developed in more forward area than

hadronic one.
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If a photon hit a tower,

N ©
A w

Enexgy deposit{GeV)
. o
N

o
._Ll

Position reconstruction

N

Arm1 calorimeter

20/40mm

[ GSO-plate

I GSO-bar hodoscope

B Tungsten

— .
6))
L T T

0.05}

Data l

1 mm

- T

20 25 30 35 40
GSO Y bar #

Lonq:tudmal size [mm]

GSO bar

28/42



Energy reconstruction
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Invariant mass of two photons N
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m Data is well matched with simulation showing clear #z° peak around
135 MeV/c? with ~8 MeV/c2 peak width.

B Invariant mass was fitted by polynomial function for background and

Gaussian one for n°,
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Background 4, subtraction
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B Spin up-down cross section can be replaced by number of particles
measured.

B No/Nq,z and Ng/Nc,g can be calculated by fitting result.

m Background 4, is calculated by where the invariant mass is further
than 5sigma from the peak.
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A, calculation

NT — N+¥

NT 4+ N
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A, calculation A

NT —(RNY

An =
N NT + RNY

m R (0.95 ~ 0.99) is estimated by luminosity ratio of charged particles
near IP.
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A, calculation
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m P (0.5~0.6) can be calculated by polarization monitor,
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A, calculation A

Luminosity ratio between
spin up and down
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Bunch shuffling A

Randomizing
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m Bunch shuffling is a technigue to confirm it there is unknown sys-
tematic uncertainties in the 4, measurement.
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Very forward #° 4, as a function of x;.

PRL 124, 252501 (2020)
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m Atverylow p,<0.07 GeV/c, the 4, is consistent with zero.

m However, the higher p;range the 4, is measured in, the more clearly
it increases as a function of x;.
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Comparison with previous measurements N
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m The very forward #° 4,, seems to be comparable with the forward

one even at low p,< 1 GeV/c.

m Non-zero 4, of z° may come from not only the non-diffractive
process but also the diffractive one.

m The forward and very forward z° 4,, may share a common underlying
production mechanism. 38/42



Comparison with previous measurements N
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process but also the diffractive one.

m The forward and very forward z° 4,, may share a common underlying
production mechanism. 38/42



Very forward #° 4, as a function of p;

PRL 124, 252501 (2020)
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m The very forward z° 4, clearly increases as a function of p;.

m Note that the resolutions of the RHICf detector are much finer than
the binning.
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Comparison with previous measurements N

Diffractive Non-diffractive (partonic)
< 0'35 ©
025/ o
- LS
0-2£HICf$ ) Forward #°
0155 D (PHENIX & STAR)
- (o)
tal 5 il
— (@) & I 5; %
0_05}@'3 o ! " 61(,) é"% (i) %
) 8 ;; O (})
o §
i - S

5
P, (GeV/c)

m The gap between two data sets will be the connection from the
diffractive to non-diffractive process.

m How competitively each process contribute to the non-zero 4, for
7° production can be studied.
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RHICf-Il experiment

N

2021
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Design optimization

Construction

2023 2024

Prototype test

Run

~>

m RHICH-Il detector will have larger active area, longer 4., than RHICt

detector,

m \\e've started discussion with STAR for Run 2024.
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Summary N

A, of very forward neutral particle production makes us to under-
stand the spin-involved production mechanism from the view points
of diffractive and non-diffractive interactions.

To understand the production mechanism of the very forward neu-
tron 4,, the RHICf experiment precisely measured it with wider p;
coverage.

A large asymmetry for very forward #° production was firstly
observed by the RHICf experiment.

To more deeply understand the 4, of very forward neutral particle,

we’re preparing to operate the RHICT-Il experiment and RHICf-STAR
combined analysis,
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