Transverse single-spin asymmetry for very forward neutral particle production in high-energy $p^{\uparrow} + p$ collisions

Minho Kim (RIKEN BNL Research Center)
on behalf of the RHICf collaboration

Transverse single-spin asymmetry (A_N)

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}$$

- In p^{\uparrow} + p collision, A_N is defined as a left-right cross section asymmetry of a specific particle or event.
 - Why do we measure the A_N ?
 - Why do we measure the A_N of very forward neutral particle?
 - How can we measure and analyze it?
 - RHICf experiment

Transverse single-spin asymmetry (A_N)

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}$$
$$= \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}}$$

- lacktriangle A_N measurement makes us to approach transverse structure of the proton.
- For non-diffractive particle production, the non-zero A_N has been explained by
 - initial transverse momentum of partons.
 - spin-dependent fragmentation.
 - higher-order quark-gluon correlation

Non-diffractive (partonic) process

- Non-diffractive process usually describes the p + p collision as "hard" scattering between quarks and gluons.
- Higher $p_T > 1$ GeV/c with many particles around.
- Forward particle production: $2 < \eta < 4$.

Diffractive (hadronic) process

- Diffractive process usually describes the p + p collision as "soft" scattering in the mesonic degree of freedom.
- Lower $p_T < 1$ GeV/c with less particles around (isolated).
- Very forward particle production: $6 < \eta$ (almost zero-degree).

A_N of very forward neutron

■ \sqrt{s} and p_T dependences of the neutron A_N s were largely smeared by insufficient position resolution.

A_N of very forward neutron

- \sqrt{s} and p_T dependences of the neutron A_N s were largely smeared by insufficient position resolution.
- RHICf experiment will show precise tendency of the neutron A_N as a function of p_T .

7/42

A_N of forward π^0

- In contrast to the neutron, non-zero A_N of forward π^0 has been measured by many experiments.
- Observed non-zero A_N has been interpreted based on quarks and gluons' degrees of freedom theoretically.

A_N of isolated forward π^0

- Larger A_N was observed by more isolated π^0 than less isolated one.
- Diffractive process may have a finite contribution to the π^0 A_N as well as non-diffractive one.

A_N of isolated forward π^0

2.6 $\langle \eta \langle 4 \rangle$ $p_T \rangle$ 1 GeV/c

- Larger A_N was observed by more isolated π^0 than less isolated one.
- Diffractive process may have a finite contribution to the π^0 A_N as well as non-diffractive one.
- In this analysis, isolated = energy fraction close to 1.

A_N of isolated forward π^0

Larger A_N was observed with decreasing multiplicity of photons (close to diffractive process event topology).

A_N of very forward π^0

- No detailed measurement ever for the $p_T < 1$ GeV/c.
- In June, 2017, the RHICf experiment firstly measured the A_N of very forward π^0 (6 $\langle \eta \rangle$) to study the role of the diffractive process to the π^0 A_N .

Cosmic-ray physics

- Cosmic-rays above 10¹⁸ eV are called ultrahigh-energy cosmic rays (UHECRs).
- Though there has been decades of many efforts, the origin of the UHECRs has been not understood yet.

13/42

Role of the hadronic interaction model

- A proper hadronic interaction model needs to precisely predict the secondary particle production.
- Cross section measurement of the very forward particle production can be a powerful way to constrain the existing models.

Relativistic Heavy Ion Collider (RHIC)

Polarized proton beam

Polarized proton beam

Polarized proton beam

Beam polarization

How the polarization can be conserved?

- There is always imperfection in the magnetic field, which can make depolarization resonance.
- A composition of four superconducting helical dipole magnets rotate the spin direction by 180° in every half revolution.

Spin pattern

Due to rotational and parity invariance, the left-right asymmetry can be measured by spin up-down asymmetry.

Right

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}$$
$$= \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}}$$

RHIC forward (RHICf) experiment

RHIC forward (RHICf) experiment

RHIC forward (RHICf) experiment

RHICf detector

- Both towers are composed of 17 tungsten absorbers, 16 GSO-plates, and 4 GSO-bar layers.
 Shower trigger
- 44 X_0 and 1.6 λ_{int} .
- Electromagnetic shower stops its development at the middle of the detector.

Two types of π^0 measurement

Neutron photon separation

Shower development

- L_{90%} is defined as the longitudinal depth whose accumulated energy deposit reaches 90% of total energy deposit in the detector.
- Electromagnetic shower is developed in more forward area than hadronic one.

Position reconstruction

Energy reconstruction

Invariant mass of two photons

- Data is well matched with simulation showing clear π^0 peak around 135 MeV/c² with ~8 MeV/c² peak width.
- Invariant mass was fitted by polynomial function for background and Gaussian one for π^0 .

30/42

Background A_N subtraction

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}} = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = \frac{(N_{S}^{\uparrow} + N_{B}^{\uparrow}) - (N_{S}^{\downarrow} + N_{B}^{\downarrow})}{(N_{S}^{\uparrow} + N_{B}^{\uparrow}) + (N_{S}^{\downarrow} + N_{B}^{\downarrow})}$$

$$A_N^{S+B} = \left(\frac{N_S}{N_{S+B}}\right) A_N^S + \left(\frac{N_B}{N_{S+B}}\right) A_N^B$$

- Spin up-down cross section can be replaced by number of particles measured.
- N_S/N_{S+B} and N_B/N_{S+B} can be calculated by fitting result.
- Background A_N is calculated by where the invariant mass is further than 5sigma from the peak.

$$A_N = rac{N^{+} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

Luminosity ratio between spin up and down

$$A_N =$$

$$\frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}}$$

■ R (0.95 ~ 0.99) is estimated by luminosity ratio of charged particles near IP.

■ $P(0.5 \sim 0.6)$ can be calculated by polarization monitor.

■ D_{ϕ} (0.78 ~ 1.00) can be estimated by ϕ distribution of particle.

Bunch shuffling

Randomizing

$$A_N = \frac{1}{PD_{\phi}} \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}}$$

■ Bunch shuffling is a technique to confirm it there is unknown systematic uncertainties in the A_N measurement.

Very forward $\pi^0 A_N$ as a function of x_F

- At very low $p_T \le 0.07$ GeV/c, the A_N is consistent with zero.
- However, the higher p_T range the A_N is measured in, the more clearly it increases as a function of x_F .

Comparison with previous measurements

- The very forward π^0 A_N seems to be comparable with the forward one even at low $p_T < 1$ GeV/c.
- Non-zero A_N of π^0 may come from not only the non-diffractive process but also the diffractive one.
- The forward and very forward π^0 A_N may share a common underlying production mechanism.

Comparison with previous measurements

The forward and very forward π^0 A_N may share a common underlying production mechanism.

Very forward $\pi^0 A_N$ as a function of p_T

- The very forward $\pi^0 A_N$ clearly increases as a function of p_T .
- Note that the resolutions of the RHICf detector are much finer than the binning.

Comparison with previous measurements

Diffractive

Non-diffractive (partonic)

- The gap between two data sets will be the connection from the diffractive to non-diffractive process.
- How competitively each process contribute to the non-zero A_N for π^0 production can be studied.

RHICf-II experiment

- RHICf-II detector will have larger active area, longer λ_{int} than RHICf detector.
- We've started discussion with STAR for Run 2024.

Summary

- \blacksquare A_N of very forward neutral particle production makes us to understand the spin-involved production mechanism from the view points of diffractive and non-diffractive interactions.
- To understand the production mechanism of the very forward neutron A_N , the RHICf experiment precisely measured it with wider p_T coverage.
- A large asymmetry for very forward π^0 production was firstly observed by the RHICf experiment.
- To more deeply understand the A_N of very forward neutral particle, we're preparing to operate the RHICf-II experiment and RHICf-STAR combined analysis.