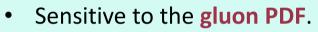
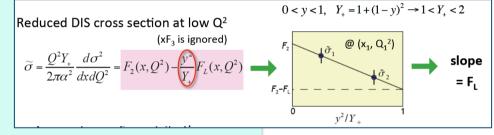
Weekly RBRC meeting 22/April/2021

Shima Shimizu

My activity


- Looking into codes which I got from Ohsumi-kun
 - Simulation study of the radiation on the EIC ZDC.
 - "g4e" package with docker
 - electronioncollider/epic-gui
 ... Not yet fully understand.
 - Trials based on instructions from Ohsumi-kun.
 - Original g4e codes are successfully compiled and run.
 - His modifications are included.
 - First attempts gave me a crash.
 - Found a file which was not mentioned in the list of modified files.
 - \rightarrow Now compiled and run. I have a root file with 100 events of something.
 - His script doesn't work. \rightarrow still trying to understand.
- Sent slides for ECCE Physics Working Group meeting (20/April/2021) (next 2 slides)
 - No feedback yet (and I haven't asked for yet.)
 - Next step in my thought: Check of MC samples
 - Is there available Photoproduction MC (i.e. background MC)?

@ZEUS: generated using PYTHIA, but I forgot details.

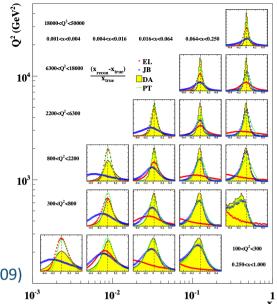

Inclusive ep DIS measurements Shima Shimizu (RIKEN/JSPS)

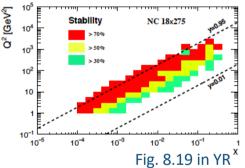
- Target measurements:
 - Double differential NC DIS cross sections
 - Double differential CC DIS cross sections
 - if possible: **F**_L measurement

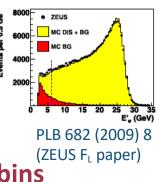
- Baseline measurements to show the detector's capability.
- High-x measurements can be important cross-check for the proton PDFs including LHC data.

- Only sizable at the high-y region.
 Can be extracted from NC cross sections at different Vs energies.
- Measured only at the end of HERA (once), with a limited statistics. **EIC has advantages of variable Vs energies and high luminosity.**
- Possible plots (\rightarrow next slide)
 - Resolution of reconstructed DIS kinematic variables (Q², x, y).
 - Detector acceptance incl. selection efficiency.
 - Background contamination.
 - Size of systematic uncertainties.

Possible plots


If the list is too long, the first two are more important, I think.




- $(x_{Reco}-x_{true})/x_{true}$ distributions in (x, Q^2) bins, also for Q^2 and y.
- Comparison of different reconstruction methods:
 - Electron method \rightarrow F₁, (high-x NC)
 - Double angle method \rightarrow NC
 - Jacquet-Blondel method \rightarrow CC

Efficiency and/or Acceptance map after a baseline analysis selections.

- (N_{generated})^{after selec.} / N_{generated} in a similar style to ones in YR.
- **Baseline analysis selections:** •
 - NC: selection of DIS events (electron requirement, $E-p_7$)
 - CC: requirement of missing E_{τ} , rejection of background events (track requirements etc.)
- Distributions of a few observables including background events.
 - NC: e.g. E_e distributions with photoproduction MC, in a few Q² ranges. •
 - \rightarrow Gives first thought on how low we can go in E_e, i.e. how high in y.
 - CC: e.g. missing p_T or ?
 - (N.B. BGs not only from ep collisions but from beam-gas, cosmic μ .)
- Size of systematic uncertainties from major sources in a few (x, Q²) bins

Thesis by R. Yongdok

(ZEUS high-Q² NC, 2009)