Asteroseismology on supernova gravitational waves

Hajime SOTANI (RIKEN) collaborate with T. Takiwaki (NAOJ), K. Sumiyoshi (NIT)

Next candidate of GW sources

- core-collapse supernovae
 - compered to binary merger, system is more spherically symmetric
 - less energy of gravitational waves
 - many numerical simulations show the existence of GW signals
 - to understand the physics behind GW signals, we adopt perturbative approach, i.e., asteroseismology

difference in two approaches

avoided crossing in GW frequency

(Sotani&Takiwaki 20b)

- one can observe the phenomena of avoided crossing between the eigenmodes.
- the f- & g₁-modes frequencies are almost independent from the selection of ρ_c (Morozova+ 18; HS, Takiwaki 20b).

pulsation energy density

$$E(r) \sim \frac{\omega^2 \varepsilon}{r^4} \left[W^2 + \ell(\ell+1)r^2 V^2 \right]$$

$$f_{\rm BV} = \operatorname{sgn}(\mathcal{N}^2) \sqrt{|\mathcal{N}^2|/2\pi}$$

$$\mathcal{N}^2 = -e^{2\Phi - 2\Lambda} \frac{\Phi'}{\varepsilon + p} \left(\varepsilon' - \frac{p'}{c_s^2} \right)$$

- f- & g₁-modes are not dominant @PNS surface
 → f- & g₁-modes weakly depend on ρ_s
- g_i-modes related to f_{BV}
- g₁-mode is strongly associated with BV freq. @r=8km, which decreases with time → decrease of g₁-mode

comparison with GW signals in numerical simulation

• GW signals correspond to g₁-mode in early phase and f-mode after avoided crossing.

dep. of GW signals on PNS models

dep. on PNS models for BH formation

3.0

2.5

2.0

1.5

1.0

0.5

()

0

400

800

 $T_{\rm pb}$ (ms)

W40-Shen

T50-Shen T50-LS180

1200

W40-LS180-W40-LS220

1600

8

(kHz)

ff 1

 $\mathbf{2}$

- Time evolution of f-mode GW strongly depends on the progenitor models.
- In any case, it can be well fitted as a function of T_{pb} , such as

$$f_f(\text{kHz}) = c_0 + c_1 \left(\frac{T_{\text{pb}}}{1000 \,\text{ms}}\right) + c_2 \left(\frac{T_{\text{pb}}}{1000 \,\text{ms}}\right)$$

 one can expect high fre. f-mode GW, even though it is not detected directly.

Universality in f-mode GWs

 The f-mode frequencies are well-expressed as a function of stellar average density, independently of progenitor models.

$$f_f(kH) = 0.9733 - 2.7171X + 13.7809X^2$$

$$X \equiv (M_{\rm PNS}/1.4M_{\odot})^{1/2} (R_{\rm PNS}/10\,{\rm km})^{-3/2}$$

• Through the f-mode GW obs., one can extract the PNS average density, which leads to the time evolution of PNS average density.

For PNS with maximum mass

 PNS <u>at the moment when it collapses to BH</u>, corresponds to the PNS model with maximum mass.[↑]

one can know via neutrino observation

- How to determine the PNS property
- With the data of the f-mode GW, one can fit the time evolution of the f-mode GW
- ② Owning to the neutrino observation, one can know the moment when PNS collapses to BH
- (3) The f-mode frequency is expected via (1) and (2), even if the f-mode freq. at the final phase would not be detected. f_{max}^{20}
- ④ Via the universal relation of the f-mode, one can extract the average density of PNS with maximum mass

Stability analysis for cold NSs

Stability of PNS @final phase

 before the apparent horizon appears inside the PNS, the PNS seems to become gravitationally unstable

summary

- we examine the GW freq. from PNSs
- f- & g₁-modes in later phase are almost independent of ρ_s
- g_1 -mode frequency decreases with time, which is related to the decrease of f_{BV} inside the PNS
- GW signals in numerical simulations correspond to g_1 & f-modes
 - we find the empirical formula for GW signals
 - via the GW observations, one could extract the PNS average density
 - we should check the universality
- Owning to the neutrino observation, one would determine the average density of PNS with maximum mass by detecting the f-mode GW.
- PNS becomes gravitationally unstable before the apparent horizon appears inside the PNS.
- We will taken into account the effect of the radial velocity as background properties.