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Next	candidate	of	GW	sources	
•  core-collapse	supernovae	

–  compered	to	binary	merger,	system	is	more	spherically	symmetric	
•  less	energy	of	gravitational	waves	

–  many	numerical	simulations	show	the	existence	of	GW	signals		
–  to	understand	the	physics	behind	GW	signals,	we	adopt	perturbative	approach,	i.e.,	

asteroseismology	

2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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difference	in	two	approaches	
•  computational	domain	

–  Model	I	:	only	inside	RPNS	defined	by	ρs	
–  Model	II	:	up	to	Rshock	

•  Boundary	condition	for	solving	the	eigenvalue	problem	
–  Model	I	:	Δp	=	0	@r	=	RPNS	
–  Model	II	:	δξr	=	0	@r	=	Rshock	
–  mathematically,	problem	to	solve	is	complete	different	
–  for	the	both	models,	the	BC	is	a	kind	of	assumption	(not	exact	one)	

•  advantage	
–  Model	I	:	matter	motion	is	relatively	small	

						mode	classification	is	as	usual	
–  Model	II	:	boundary	is	uniquely	determined	

•  disadvantage	
–  Model	I	:	uncertainty	in	choice	of	ρs	
–  Model	II	:	matter	motion	may	not	be	negligible	outside	RPNS	

						mode	classifications	is	different	from	the	standard	one.		
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avoided	crossing	in	GW	frequency	
(Sotani&Takiwaki	20b)	

•  one	can	observe	the	phenomena	of	avoided	crossing	between	the	eigenmodes.	
•  the	f-	&	g1-modes	frequencies	are	almost	independent	from	the	selection	of	ρc	

(Morozova+	18;	HS,	Takiwaki	20b).	
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
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[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

Next, we consider to identify the ramp up signals of gravitational waves in numerical data. Using the numerical data

obtained via hydrodynamical simulations, as in Murphy, Ott, & Burrows (2009), the dimensionless characteristic gravitational

wave strain is given by

hchar(f, Tpb) =

√
2G

π2c3D2

dEGW

df
, (4)

where D denotes the source distance, while dEGW/df denotes the time-integrated energy spectra of gravitational wave calcu-

lated with a short-time Fourier transform, S̃(f, Tpb), via

dEGW

df
(f, Tpb) =

3G
5c2

(2πf)2 |S̃(f, Tpb)|, (5)

mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019).
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 1. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

1 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 2. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

2 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019). On the
other hand, since the region, where the Brunt-Väisälä frequency becomes negative, i.e., convectively unstable, is very limited in this
study, the g-mode oscillations are stably excited. Thus, whether or not the g-mode oscillations can be excited strongly depends on the
strength of convection and the width of the convectively unstable region.
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in	numerical	simulation		

•  GW	signals	correspond	to	g1-mode	in	early	phase	and	f-mode	after	
avoided	crossing.	
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line
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FIG. 3: Comparing the gravitational wave signals appearing in the numerical simulation (background contour) to the PNS frequencies (open-
marks) determined by solving the eigenvalue problem for the PNS model with TGLD.
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FIG. 4: The f - and g1-mode frequencies for various PNS models are shown as a function of the postbounce time.

in Ref. [19]. In this study, we focus on only the ℓ = 2 oscillation modes, because they are considered to become energetically
dominant in the gravitational wave emission.

In Fig. 3 we show the PNS oscillation frequencies determined by solving the eigenvalue problem with open marks on the
contour, which denotes the gravitational wave signals appearing in the numerical simulation, for the PNS model with TGLD
(see in appendix A for the other PNS models), focusing on only the f -, gi-, and pi-mode frequencies. Here, the gravitational
wave signals are calculated with the same procedure as in Ref. [65], using the numerical data obtained by simulations. From
this figure, as in Ref. [20], one can obviously see that the gravitational wave signals in numerical simulation is identified by the
g1-mode (f -mode) oscillation from the PNS before (after) the avoided crossing between the f - and g1-mode. In Fig. 4, we also
plot the time evolution of the f - and g1-mode frequencies for various PNS models. As in Ref. [17], one can observe that the
time evolution of the gravitational waves strongly depends on the PNSs models (see also Fig. 8).

On the other hand, in the left panel of Fig. 5, we show the f - and g1-mode frequencies as a function of the square root of the
PNS average density, x. From this figure, the f - and g1-mode frequencies according to the gravitational wave signals appearing
in the numerical simulation are well fitted, such as

f (kHz) = −1.410− 0.443 ln(x) + 9.337x− 6.714x2, (3)

independently of the PNS models. The predicted values from Eq. (3) are also plotted in the left panel of Fig. 5 with the thick-
solid line. That is, once one would detect the supernova gravitational waves, which could be the same as gravitational wave
signals appearing in the numerical simulations, one can extract the evolution of the PNS average density by using Eq. (3). In the
same figure, we also show the empirical relation for the f -mode frequency derived in Ref. [42], which is

ff (kHz) = 0.9733− 2.7171x+ 13.7809x2, (4)

with the thick-dashed line. We remark that this relation is obtained for the case of the failed supernova with general relativistic
simulation, i.e., the PNS considered in Ref. [42] would eventually collapse to a black hole. By comparing this empirical relation
to the gravitational wave frequencies obtained in this study and the fitting formula given by Eq. (3), one can observe a significant



dep.	on	PNS	models	for	BH	formation	
•  Time evolution of f-mode GW  
strongly depends on the  
progenitor models. 

•  In any case, it can be well fitted  
as a function of Tpb, such as 

–  one can expect high fre. f-mode GW,   
even though it is not detected directly.  
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FIG. 5: Evolution of the frequency of the f -mode gravitational waves for various PNS models.
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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0 400 800 1200 1600

0.5

1.0

1.5

2.0

2.5

Tpb (ms)

 f f
 (k

H
z)

W40-Shen
W40-LS180
W40-LS220

0 400 800 1200 1600

0.5

1.0

1.5

2.0

2.5

Tpb (ms)

 f f
 (k

H
z)

T50-Shen
T50-LS180

FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968
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FIG. 3: Evolution of the PNS radius (left), the gravitational mass (center), and the average density (right) for various PNS models, where the
surface density is fixed to be 1011 g/cm3.
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FIG. 4: Evolution of the eigenfrequencies for the PNS model of W40-Shen. The right panel is just an enlarged view of the left panel. The f -,
pi-, and gi-modes are shown with the diamonds, squares, and circles.

III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at
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Universality	in	f-mode	GWs	
•  The f-mode frequencies are 
well-expressed as a function 
of stellar average density, 
independently of progenitor 
models. 

•  Through the f-mode GW obs., one can extract the PNS average 
density, which leads to the time evolution of PNS average 
density. 
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FIG. 7: Frequencies of the f -mode gravitational waves from various PNS models are shown as a function of the square root of the PNS average
density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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For	PNS	with	maximum	mass	
•  PNS at the moment when it collapses to BH, corresponds to 
the PNS model with maximum mass. 

•  How to determine the PNS property 
①  With the data of the f-mode GW, one can  
fit the time evolution of the f-mode GW  

②  Owning to the neutrino observation, one can 
know the moment when PNS collapses to BH 

③  The f-mode frequency is expected via ① and ②, 
even if the f-mode freq. at the final phase 
would not be detected. 

④  Via the universal relation of the f-mode,  
one can extract the average density of  
PNS with maximum mass 
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one can know via neutrino observation
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density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272

②neutrino ob.

③fmax

fmax

①	

④	
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FIG. 3: For the neutron stars constructed with Togashi EOS [76], the mass of stars is shown as a function of the central density, ρc, normalized
by the nuclear saturation density, ρ0, in the left-top panel and as a function of the stellar radius in the right-top panel, while the corresponding
frequencies of the lowest three radial oscillations are shown as a function of ρc/ρ0 in left-bottom panel. The open-circle denotes the stellar
model with the maximum mass. It is obvious that the frequency of the lowest (1st) radial oscillation becomes negative for the stellar model
constructed with the central density, which is more than that for the neutron star with the maximum mass.

frequency is positive for most of the PNS models considered in this study, while it becomes negative for a few PNS models at the
last moment. That is, the PNS model for which the lowest frequency is zero is the PNS model with the maximum mass allowed
with the adopted EOS. In addition, we find that the lowest frequency monotonically decreases with time at least in the phase
considered in this study, while the second and third lowest frequencies for the models with soft EOSs increase. Incidentally, the
second and third lowest frequencies become negative at the end as for the model of T50-Shen.

Furthermore, we focus on the lowest frequency in Fig. 5, where the lowest frequency is shown as a function of Tpb − TBH

(left panel) and the PNS compactness (right panel). From the left panel, we see that the time evolution of the lowest frequency
(especially in the last ∼ 40 msec) weakly depend on the PNS model, although the second and third lowest frequencies depend
on the PNS model, as mentioned above. We found that, from the right panel, the gradient of the lowest frequency with respect
to the PNS compactness seems to be almost independent of the PNS models at the last moment, although as shown in Fig. 2
the PNS properties in the final phase depend on PNS models. In practice, the radial oscillation itself is not associated with the
gravitational radiations, but one can observe the aspect of the radial oscillations in the gravitational waves through the nonlinear
coupling between the radial and nonradial oscillations [77].

IV. PROTONEUTRON STAR ASTEROSEISMOLOGY

In this study, we also examine the gravitational wave frequency from the PNSs in the final phase just before the black hole
formation. For this purpose, as in Ref. [41] we simply adopt the relativistic Cowling approximation, i.e, the metric perturbations
are neglected during the fluid oscillations, where one can derive the perturbation equations by linearizing the energy-momentum
conservation law. Then, by adopting the appropriate boundary conditions at the stellar center and the radius, the problem to solve
becomes an eigenvalue problem with respect to the eigenvalue ω, with which the gravitational wave frequency, f , is determined
via f = ω/(2π). The perturbation equations and boundary conditions are the same as in Ref. [17]. That is, we make a linear
analysis in a similar way to the previous study [41], but we especially focus on the final phase toward the black hole formation
in this study.

First, we examine how the gravitational wave frequencies from the PNSs depend on the PNS surface density. This dependence
has already been discussed in Refs. [16, 18] for the PNSs produced by the thrived supernova explosions, where the f - and g1-
mode frequencies are independent of the selection of the surface density after the avoided crossing between the both modes,

Stability	analysis	for	cold	NSs	

•  making radial perturbation analysis,  
NSs become gravitationally unstable,  
if fξ< 0. 

•  NS model with the maximum mass 
corresponds to the onset of instability. 
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Finally, as in the previous studies (e.g., Refs. [16, 17, 20, 21, 38, 41]), we assume that the PNS model are in a static equilibrium
at each time step and prepare the PNS model as a background model for considering the linear analysis in this study. In this
case, the metric is given with the spherical coordinate as

ds2 = −e2Φdt2 + e2Λdr2 + r2
(
dθ2 + sin2 dφ2

)
. (2)

Now, Φ and Λ are functions only of r and e2Λ is directly associated with the mass function m(r) via e−2Λ = 1− 2m/r.

III. STABILITY OF PROTONEUTRON STARS

As seen in the previous section, the mass of the protoneutron star increases with the accession, which eventually approaches
the maximum mass allowed with the adopted EOSs. Then, the protoneutron star would gravitationally collapse to a black hole.
The moment when the protoneutron star approaches its maximum mass corresponds to the onset of the instability. In order to
determine the onset of instability in the evolution of the protoneutron stars, we make a linear analysis with the radial perturbation
on the protoneutron star models at each time step after core bounce. For this purpose, one can derive the perturbation equations
as

dξ

dr
= −

[
3

r
+

p′

p+ ε

]
ξ − η

rΓ
, (3)

dη

dr
=

[
r(p+ ε)e2Λ

(
ω2

p
e−2Φ − 8π

)
− 4p′

p
+

r(p′)2

p(p+ ε)

]
ξ −

[
εp′

p(p+ ε)
+ 4πr(p+ ε)e2Λ

]
η, (4)

where p, ε, and Γ denote the pressure, energy density, and adiabatic index for the background protoneutron star models, while
ξ and η are perturbative variables given by ξ ≡ ∆r/r and η ≡ ∆p/p with the radial displacement, ∆r, and the Lagrangian
perturbation of pressure, ∆p [71–73]. The prime in the equations denotes the radial derivative and the adiabatic index is given
by

Γ ≡
(

∂ ln p

∂ lnnb

)

s

=
p+ ε

p
c2s, (5)

where nb, s, and cs denote the baryon number density, entropy per baryon, and sound velocity, respectively. We remark that
one can derive the Sturm-Liouville type second order differential equation with respect to ξ from Eqs. (3) and (4). To solve the
eigenvalue problem with respect to the eigenvalue ω2, one should impose the appropriate boundary conditions. The boundary
condition at the stellar surface comes from the condition to remove the singularity in Eq. (4) [72], i.e.,

η = −
[(

ω2R3
PNS

MPNS
+

MPNS

RPNS

)(
1− 2MPNS

RPNS

)−1

+ 4

]
ξ, (6)

while the boundary condition at the center is the regularity condition, i.e.,

3Γξ + η = 0. (7)

In addition, as normalization of the eigenfunction, we set ξ = 1 at the stellar center. Then, with the resultant eigenvalue ω2, the
frequency of radial oscillations are given by

fξ = sgn(ω2)
√
|ω2|/2π, (8)

where the system is unstable when ω2 becomes negative.
For the case of cold neutron stars, it is well known that the stellar models constructed with the central density, which is more

than that for the neutron star model with the maximum mass, are unstable. As an example (and as a test of our code for the
eigenvalue problem with respect to the radial oscillations), we show the results for the neutron star models constructed with
Togashi EOS [76] in Fig. 3, where top panels correspond to the equilibrium models, i.e., the stellar mass is shown as a function
of the central density, ρc, noramalized by the nuclear saturation density, ρ0, in the left-top panel and as a function of the stellar
radius in the right-top panel. The open-circle denotes the stellar model with the maximum mass. In the bottom-left panel,
we show the frequencies of the lowest three radial oscillations as a function of ρc/ρ0. From this figure, it is obvious that the
frequency of the lowest radial oscillation becomes negative for the stellar models with the central density, which is larger than
that for the stellar model with the maximum mass, i.e., the corresponding stellar models are unstable.

Now, we consider the case of PNSs. In Fig. 4, we show the frequencies of the lowest three radial oscillations on the various
PNS models for the final phase just before the black hole formation. From this figure, one can obviously see that the lowest
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Stability	of	PNS	@final	phase	
•  before the apparent horizon appears inside the PNS, the PNS 
seems to become gravitationally unstable 
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FIG. 5: For various PNS models, the frequencies of the 1st radial oscillations for the final phase are shown as a function of Tpb − TBH (left
panel) and MPNS/RPNS (right panel).

while the other modes, especially the pi-modes with i ≥ 2, depend on the surface density. This behavior may be understood
by considering the radial profile of pulsation energy density (or eigenfunction) [18]. That is, the f - and g1-modes significantly
oscillate inside the star, while the other modes oscillate not only inside the star but also in the region closed to the PNS surface.

In the case for the PNSs in the failed supernovae considered in this study, we show the gravitational wave frequencies of the
f -, pi-, and gi-modes with i = 1− 3 in Fig. 6 for the PNS models of W40-Shen (left panel) and W40-LS220 (right panel) with
ρs = 1011 (open-marks) and 2× 1011 g/cm3 (filled mark). From this figure, we confirm that the f - and g1-mode frequencies are
basically independent of the selection of the surface density even for the failed supernovae after the avoided crossing between
the f - and g1-modes. We also find that the dependence of the surface density can be seen in the g1-mode frequency in the final
phase just before the black hole formation, which is the period after the avoided crossing between the g1- and g2-modes. In
addition, as in the previous studies for the PNSs produced via the thrived supernova explosions, the other modes seem to depend
on the selection of surface density, where we find that the p1-mode frequency significantly depends on the surface density in the
late phase after the core bounce. We remark that a wiggling in the p1-mode frequency with ρs = 1011 g/cm3 may come from
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summary	
•  we examine the GW freq. from PNSs 
•  f- & g1-modes in later phase are almost independent of ρs 
•  g1-mode frequency decreases with time, which is related to the 
decrease of fBV inside the PNS 

•  GW signals in numerical simulations correspond to g1- & f-modes 
–  we find the empirical formula for GW signals 
–  via the GW observations, one could extract the PNS average 
density 

–  we should check the universality 
•  Owning to the neutrino observation, one would determine the 
average density of PNS with maximum mass by detecting the f-
mode GW. 

•  PNS becomes gravitationally unstable before the apparent horizon 
appears inside the PNS.   

•  We will taken into account the effect of the radial velocity as 
background properties.  
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