<u>~中性子星の観測と理論~研究活性化ワークショップ2021</u>

中性子星を考慮したバーストモデル に基づいたrpプロセスの再検討 <u>に向けて</u>

西村 信哉

理化学研究所

Collaboration with

<u>土肥明(九州大/理研)、橋本 正章(九州大)、野田常雄(久留米工大)、</u> 長瀧重博(理研) +MC 元素合成コラボレーション

<u>Contents</u>

Introduction

- ・ 鉄よりも重い元素を作る元素合成
- ・ 核反応率の不定性と元素合成
- ・ <u>rpプロセスの不定性と "key" 反応率</u>
 - ・ 方法:1 zoneモデル+ポストプロセス
 - ・結果
 - ・生成物の不定性
 - key reactions
- ・ <u>まとめ</u>

核図表と宇宙の元素合成

Aziz et al. (2021), AAPPS Bulletin

<u>共同研究者</u>

T. Rauscher (Basel/Hertfordshire), R. Hirschi (Keele),

G. Cescutti (INAF), A. St. Murphy (Edinburgh) and guest authors

不定性大

- ・rプロセス → (準備中)
 - ・<u>rpプロセス</u>→本研究

<u> 文献</u>

- Rauscher, NN+2016, MNRAS 463 NN+2017, MNRAS 469
- NN+2018, MNRAS 474

- Cescutti, Hirschi, NN+2018, MNRAS 478

– NN+2019, MNRAS 489

※「観測により反応率を制限」「反応率測定により宇宙の謎を解明」系の研究は、片方の軸によってないと成り立ちにくい?

X線バーストでのrpプロセス: 核反応率の不定性の影響と重要な反応率

土肥さんスライド

<u>rpプロセス</u>

土肥さんスライド

Meisel+(2018)

<u>モンテカルロ元素合成コード</u>

- Monte-Carlo framework
 - PizBuin MC-driver
 - (developed by Rauscher, NN, Hirschi)
 - a simple "Brute-force" approach
 - parallelized by OpenMP for shared memory architectures
 (paralleled easily, but harder debugging. . .)

Piz Buin (mountain)

Nuclear Reaction network

- Network solver:
 - WinNet: the latest Basel network, Winteler+, 2012
- Reaction rates:
 - Reaclib: (Rauscher & Thielemann 2000)
 - T-dependent beta-decay (Takahashi & Yokoi 1987, Goriely 1999)
- T-dependent uncertainty:
 - Provided by Reaclib format, based on Rauscher 2012

"相関係数"による選別

<u>*key reaction"のリスト</u> ※例はsプロセス 条件にあう「重要な反応・崩壊率」をまとめる

(sプロセスの場合ほとんど生成物に隣接する中性子捕獲)

	$\begin{array}{c} \text{Product} \\ (\mathbf{n}, \gamma) \text{-target} \end{array}$		⁶⁷ Zn	⁷² Ge ⁷² Ge	⁷³ Ge ⁷³ Ge	$^{77}\mathrm{Se}$ $^{77}\mathrm{Se}$	⁷⁸ Se ⁷⁸ Se	⁸¹ K	r 83	Kr	⁸⁵ Kr	
			⁶⁷ Zn					⁸¹ E	$^{81}{ m Br}$ 83		⁶⁶ Kr	
$r_{ m cor,0}$			-0.67	-0.85	-0.84	-0.86	-0.71	-0.3	80 -0	0.76	0.84	
Table 2: Product	Key neut	ron-caj ⁷¹ Ga	oture re	ractions 72 Ge	for the 1 74 Ge	main s-p	rocess. '	The col	lumns a	re the	same as	Table 1
$, \gamma$)-target	t ⁶⁹ Ga	"Ga	"Ge	⁽² Ge	"Ge	"As	"Se	"Se	Br	* Kr	*"Se	⁸¹ Br
Tcor,0	-0.78	-0.89	-0.87	-0.93	-0.97	-0.80	-0.89	-0.97	-0.94	-0.90	-0.96	-0.74
Product	- Kr	86 Kr	87 DI	85 D	Sr 860	87g	88c	89 Y	90 g	92 g	93 ND	94g
, γ)-target	t	Kr	Rb	Rb	Sr	Sr	Sr	Ŷ	Zr	Zr	Nb	Zr
	-0.98	0.88	0.86	-0.86	-0.94	-0.92	-0.65	-0.83	-0.88	-0.92	-0.97	-0.85
Tcor,0	06			9971	100 Ru	102 Ru	Rh	Pd	Pd	"Pd	Pd	109 Ag
rcor,0 Product	96 Mo	97 Mo	98.	1 C	100.0	102	103	104	106	107 .	108	
$\frac{r_{\rm cor,0}}{{ m Product}}$, γ)-target	⁹⁶ Mo ⁹⁶ Mo	⁹⁷ Mo	98 Mo	99 Ru	100Ru	$^{102}\mathrm{Ru}$	¹⁰³ Rh	¹⁰⁴ Pd	¹⁰⁶ Pd	¹⁰⁷ Ag	¹⁰⁸ Pd	Ag
$r_{cor,0}$ Product $r_{cor,0}$	⁹⁶ Mo ⁹⁶ Mo -0.94	⁹⁷ Mo -0.87	⁹⁸ Mo -0.94	⁹⁹ Ru -0.91	¹⁰⁰ Ru -0.92	¹⁰² Ru -0.86	¹⁰³ Rh -0.95	¹⁰⁴ Pd -0.97	¹⁰⁶ Pd -0.96	¹⁰⁷ Ag -0.80	¹⁰⁸ Pd -0.96	-0.79
$r_{cor,0}$ Product $r_{cor,0}$ Product	⁹⁶ Mo ⁹⁶ Mo -0.94 ¹¹⁵ In	⁹⁷ Mo ⁹⁷ Mo -0.87 ¹¹⁵ In	⁹⁸ Mo -0.94 ¹²¹ Sb	⁹⁹ Ru -0.91 ¹²⁶ Te	¹⁰⁰ Ru -0.92	¹⁰² Ru -0.86 ¹³² Xe	¹⁰³ Rh -0.95 ¹³³ Cs	¹⁰⁴ Pd -0.97 ¹³⁴ Ba	¹⁰⁶ Pd -0.96 ¹³⁶ Ba	¹⁰⁷ Ag -0.80 ¹³⁷ Ba	¹⁰⁸ Pd -0.96 ¹³⁸ Ba	-0.79 139La
$r_{cor,0}$ Product γ)-target $r_{cor,0}$ Product γ)-target	t ^{96}Mo -0.94 ^{115}In t ^{115}In	⁹⁷ Mo 97Mo -0.87 ¹¹⁵ In ¹¹⁵ Sn	⁹⁸ Mo -0.94 ¹²¹ Sb ¹²¹ Sb	⁹⁹ Ru -0.91 ¹²⁶ Te ¹²⁶ Te	100 Ru -0.92 127 I 127 I 127 I	¹⁰² Ru -0.86 ¹³² Xe ¹³² Xe	¹⁰³ Rh -0.95 ¹³³ Cs ¹³³ Cs	¹⁰⁴ Pd -0.97 ¹³⁴ Ba ¹³⁴ Ba	¹⁰⁶ Pd -0.96 ¹³⁶ Ba ¹³⁶ Ba	¹⁰⁷ Ag -0.80 ¹³⁷ Ba ¹³⁷ Ba	¹⁰⁸ Pd -0.96 ¹³⁸ Ba ¹³⁸ Ba	¹³⁹ Ag -0.79 ¹³⁹ La ¹³⁹ La
$r_{cor,0}$ Product (γ) -target $r_{cor,0}$ Product (γ) -target $r_{cor,0}$	$t = \frac{{}^{96}Mo}{{}^{96}Mo} - 0.94$ $t = \frac{{}^{115}In}{{}^{115}In} - 0.97$	⁹⁷ Mo 97Mo -0.87 ¹¹⁵ In ¹¹⁵ Sn -0.65	⁹⁸ Mo -0.94 ¹²¹ Sb ¹²¹ Sb -0.92	1° 99 Ru -0.91 126 Te 126 Te -0.68	100 Ru - 0.92 127 I - 0.92 127 I - 0.92	102 Ru -0.86 132 Xe 132 Xe -0.97	¹⁰³ Rh -0.95 ¹³³ Cs ¹³³ Cs -0.89	¹⁰⁴ Pd -0.97 ¹³⁴ Ba ¹³⁴ Ba -0.85	¹⁰⁶ Pd -0.96 ¹³⁶ Ba ¹³⁶ Ba -0.88	¹⁰⁷ Ag -0.80 ¹³⁷ Ba ¹³⁷ Ba -0.84	¹⁰⁸ Pd -0.96 ¹³⁸ Ba ¹³⁸ Ba -0.65	¹³⁹ Ag -0.79 ¹³⁹ La ¹³⁹ La -0.88
$r_{cor,0}$ Product $r_{cor,0}$ Product $(, \gamma)$ -target $r_{cor,0}$ Product Product	$ \begin{array}{c} {}^{96}\text{Mo} \\ {}^{96}\text{Mo} \\ -0.94 \\ {}^{115}\text{In} \\ {}^{115}\text{In} \\ {}^{115}\text{In} \\ -0.97 \\ {}^{159}\text{Tb} \end{array} $	⁹⁷ Mo 97Mo -0.87 ¹¹⁵ In ¹¹⁵ Sn -0.65 ¹⁶⁵ Ho	⁹⁸ Mo -0.94 ¹²¹ Sb ¹²¹ Sb -0.92 ¹⁵⁶ Er	1c 99 Ru -0.91 126 Te 126 Te 126 Te -0.68 167 Er	100 Ru - 0.92 127 I 127 I 127 I -0.92 168 Er	¹⁰² Ru -0.86 ¹³² Xe ¹³² Xe -0.97 ¹⁶⁹ Tm	¹⁰³ Rh -0.95 ¹³³ Cs ¹³³ Cs -0.89 ¹⁸¹ Ta	¹⁰⁴ Pd -0.97 ¹³⁴ Ba ¹³⁴ Ba -0.85 ¹⁸⁷ Os	¹⁰⁶ Pd -0.96 ¹³⁶ Ba ¹³⁶ Ba -0.88 ¹⁹² Pt	¹⁰⁷ Ag -0.80 ¹³⁷ Ba ¹³⁷ Ba -0.84 ¹⁹⁴ Pt	108 Pd -0.96 138 Ba 138 Ba -0.65 200 Hg	¹³⁹ Ag -0.79 ¹³⁹ La ¹³⁹ La -0.88 ²⁰⁵ Pb
$\frac{r_{cor,0}}{Product}$ $\frac{r_{cor,0}}{Product}$ $\frac{r_{cor,0}}{Product}$ $\frac{r_{cor,0}}{Product}$ $\frac{r_{cor,0}}{Product}$ $\frac{r_{cor,0}}{Product}$ $\frac{r_{cor,0}}{Product}$	t ${}^{96}Mo$ -0.94 ${}^{115}In$ t ${}^{115}In$ -0.97 t ${}^{159}Tb$ t ${}^{159}Tb$	⁹⁷ Mo ⁹⁷ Mo -0.87 ¹¹⁵ In ¹¹⁵ Sn -0.65 ¹⁶⁵ Ho ¹⁶⁵ Ho	^{98}Mo -0.94 ^{121}Sb ^{121}Sb -0.92 ^{156}Er ^{156}Er	1c 99 Ru -0.91 126 Te 126 Te -0.68 167 Er 167 Er	${}^{100}\text{Ru} \\ -0.92 \\ {}^{127}\text{I} \\ {}^{127}\text{I} \\ -0.92 \\ {}^{168}\text{Er} $	102 Ru -0.86 132 Xe 132 Xe -0.97 169 Tm 169 Tm	$^{103}\text{Rh} \\ -0.95 \\ ^{133}\text{Cs} \\ ^{133}\text{Cs} \\ -0.89 \\ ^{181}\text{Ta} \\ ^{181}\text{Ta} \\ ^{181}\text{Ta} \\ \end{array}$	¹⁰⁴ Pd -0.97 ¹³⁴ Ba ¹³⁴ Ba -0.85 ¹⁸⁷ Os ¹⁸⁷ Os	¹⁰⁶ Pd -0.96 ¹³⁶ Ba ¹³⁶ Ba -0.88 ¹⁹² Pt ¹⁹² Pt	¹⁰⁷ Ag -0.80 ¹³⁷ Ba ¹³⁷ Ba -0.84 ¹⁹⁴ Pt ¹⁹⁴ Pt	108 Pd -0.96 138 Ba 138 Ba -0.65 200 Hg 200 Hg	¹⁰⁹ Ag -0.79 ¹³⁹ La ¹³⁹ La -0.88 ²⁰⁵ Pb ²⁰⁵ Tl

- NN+2017, MNRAS 469 - Cescutti, Hirschi, NN+2018, MNRAS 478

<u>方法:X線バーストの1 zone モデル</u>

- ・rpプロセスの「典型的」な物理環境を再現: "OD"モデル ・複雑な解析を行うベース
 - ・より「現実的」なモデルからは否定されるが、
 - ・元素合成の解析では、割と便利に使われたりする。
- ・ここでは代表的なものを使用
 - ・Schatz et al. (2001)など、rpプロセスが強いもの

<u>方法: (full) 核反応ネットワーク</u>

- 全核種:1042核種(陽子過剰, A<130)
- 全核反応: 6349反応
- 生成核種:Fe以上の112核種
 - 今回、軽い元素への影響は考慮せず(これまでの研究の名残)

<u>rpプロセスの生成物の不定性</u>

<u>先行研究:rpプロセスの"key reactions"</u>

Cyburt et al. (2016), ApJ 不定性を個別の反応ごとに振る

光度曲線への感度

Table 1

Reactions that Impact the Burst Light Curve in the Single-zone X-Ray Burst Model

Rank	Reaction	Type ⁿ	Sensitivity ^h	Category 1	
1	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5		
2	⁵⁹ Cu(p, γ) ⁶⁰ Zn	D	12.1	1	
3	¹⁵ O(α, γ) ¹⁹ Nc	D	7.9	1	
4	³⁰ S(a, p) ³³ Cl	U	7.8	1	
5	${}^{26}{\rm Si}(\alpha, p){}^{29}{\rm P}$	U	5.3	1	
6	61Ga(p, γ)62Ge	D	5.0	1	
7	23Al(p, 7)24Si	u	4.8	1	
8	${}^{27}P(p, \gamma){}^{28}S$	D	4.4	1	
9	63Ga(p, γ)64Ge	D	3.8	1	
10	⁶⁰ Zn(α, p) ⁶³ Ga	U	3.6	1	
11	$^{22}Mg(\alpha, p)^{25}Al$	D	3.5	1	
12	50Ni(p, 7)57Cu	D	3.4	1	
13	²⁹ S(a, p) ³² Cl	U	2.8	1	
14	$^{28}S(\alpha, p)^{31}Cl$	U	2.7	1	
15	31Cl(p, 7)32Ar	U	2.7	1	
16	¹⁵ K(p, γ) ³⁶ Ca	υ	2.5	2	
17	¹⁸ Ne(a, p) ²³ Na	D	2.3	2	
18	²⁵ Si(α, p) ²⁸ P	U	1.9	2	
19	³⁷ Cu(p, γ) ⁵⁸ Zn	D	1.7	2	
20	34Ar(a, p)37K	U	1.6	3	
21	$^{24}Si(\alpha, p)^{27}P$	u	1.4	3	
22	$^{22}Mg(p, \gamma)^{23}Al$	D	1.1	3	
23	65As(p. 7)66Se	U	1.0	3	
24	14O(a, p)17F	U	1.0	3	
25	40Sc(p, 2)40Ti	D	0.9	3	
26	34Ar(p, 7)35K	D	0.8	3	
27	47Mn(p, 7)48Fe	D	0.8	3	
28	39Ca(p, ~)40Sc	D	0.8	3	

Count	Reaction	Max, Botio	Affected Mass Numbers with Mass Fraction $> 10^{-4}$					
		- Internet	max	>×10 change	$\times 2 < \text{change} < \times 10$			
1	¹² C(p, 7) ¹² N	6	16		16			
2	¹⁵ O(a, γ) ¹⁹ Ne ^b	4	15		15			
3	$^{16}O(\alpha, \gamma)^{20}Ne^4$	7	16		16, 20-21			
4	¹³ F(α, p) ²² Ne [*]	2	21		21			
5	^D F(p, 7) ¹⁸ Nc [*]	3	19		18-19, 21			
6	${}^{10}F(\alpha, p)^{21}Ne^{2}$	2	23		18, 21, 23			
7	¹⁸ Ne(n, p) ³² Na*	7	19		18-19, 21, 24, 57			
8	$^{30}Ne(\alpha, \gamma)^{34}Mg^{4}$	6	20		20, 24			
9	²² Na(o, p) ²⁵ Mg*	4	27		16, 21, 25, 27			
10	²² Na(p. 7) ²² Mg	4	23		23			
11	²² Mg(o, p) ²² Al*	20	22	22	21, 23-27, 57			
12	²⁵ Mg(p, $\gamma)^{24}Al$	2	23		23			
13	PAlle and Si	4	-57		15 19 21 24 26 28 45 57 20 24 81-82			
14	34Al(n225)	2	24		24			
15	MAlin 2025	6	23		23			
16	MSI (or o) 3P2	3	18		18.21 46 57 70 73.75 78 82 86			
17	Distin of Dp	3	27		27			
18	20Sin si2p	2	28		28			
19	27P(0	2	26		25			
20	21p/n ->220g	2	28		28			
21	20pm	4	29		24			
22	Since white	3	31		3			
11	7997 (c. 10 ²⁰ 171 ²	2	19		18.19			
24	30S(m m)33C1*	-	18		18-21 46 57 70-71 72-75 77-78 81-83 86			
25	HSin with Th	6	31		11 11			
26	2011/m 30234r		33		32,33			
27	²⁵ Cl(a -) ²⁴ Ar	4	31		39			
28	*Arin ovisk*	7	34		35-37			
20	Staria - WK	4	36		34			
30	WKID AND Ca	-	36		x			
91	FK(e, m)PCa	6	37		37			
32	WKin wHCa	3	40		40			
17	4)Cate at415.02	6	40		40 42-46			
34	4Sele -3PTi	10	41	41	47			
15	428c(p. 219Ti	3	42		42 43			
36	49Ti(0, 2)44V	8	41		43 45			
37	42Ti(n. 2)45V	2	44		44			
38	45V(0, 2)49Cr	7	44		44 45			
30	49V(n. 2)45Cr*	6	45		45-46			
40	49V10. 204"Cr	2	46		46			
41	4 ² Cr(p. 7) ⁴ %/m ²	8	47		47			
42	"Crip. 2)"Mn"	3	48		45			
43	"Min(n, n)"Fr	10	48	48				
44	⁴⁹ Mo(n, n) ²⁰ Fe	7	49		49			
45	"Moin, >) Silve	3	50		50-51			
46	"Mate, w"Fe	2	51		51			
47	SiFe(p, a) Co	5	51		51			
48	²² Fe(p, γ) ²² Co ⁴	7	.52		52			
49	SFe(p, p)SCo	3	53		53			
50	STein viSCo	3	54		54			
51	²² Coip. vi ²⁵ N	5	52		52			
52	²³ Co(p. v) ³⁴ Ni	10	53	53				
53	S'Cofp. of S'Ni2	10	54	54				
54	25Cuip. vi 26Ni	10	.55	55	56			
55	"Ni(o, n)"Cn1	7	24		12 16 21 22 24 34 36 39 42 44 46 50 52 54 57 61 63 65 67 69 71 73 75			

牛成物

Table 4

77-78, 80-85

<u>rpプロセスの"key reactions"</u>

 $^{4}\text{He} + {^{4}\text{He}} + {^{4}\text{He}} \longrightarrow {^{12}\text{C}}:$ ⁵⁹Co, ⁶⁰Ni, ⁶⁴Zn, ⁶⁸Zn, ⁷²Ge, ⁷⁶Se, ⁹⁸Ru, ¹⁰⁷Ag ⁵⁷Fe ⁵⁸Ni ⁶¹Ni ⁶²Ni ⁶³Cu ⁶⁵Cu ⁶⁶Zn ⁶⁷Zn ⁶⁹Ga ⁷¹Ga ⁷⁰Ge ⁷³Ge ⁷⁵As ⁷⁴Se ⁷⁷Se ⁷⁹Br ⁸¹Br ⁷⁸Kr ⁸⁰Kr ⁸²Kr ⁸³Kr ⁸⁶Sr $|r_{\rm cor}| > 0.4$ ⁸⁷Sr ⁸⁸Sr ⁸⁹Y ⁹¹Zr ⁹²Mo ⁹⁴Mo ⁹⁶Ru ¹⁰⁰Ru ¹⁰⁵Pd ¹⁰⁹Ag ¹⁰⁸Cd ※ hot-CNOなど他の軽元素の反応率の影響はあるが相対的に小さい。 The Sn-Sb-Te cycle 101 In(p, γ) 102 Sn: 101 Ru (y,a) ¹⁰⁷Te ¹⁰⁶Te ¹⁰⁸Te $^{103}{
m Sn}(eta^+)^{103}{
m In}:~^{103}{
m Rh}$ ¹⁰⁴Sb ¹⁰⁵Sb ¹⁰⁶Sb 104 Sn(β^+) 104 In: 104 Pd, (105 Pd) 106 Sn ¹⁰⁵Sn 103 Sn 104 Sn トリプルαが支配的→元素合成の起点 ¹⁰²In ¹⁰³In ¹⁰⁵In ¹⁰⁴In 天体モデルの性質と競合する(いわゆる、 エネルギーソースの反応)ので、分離する工夫が必要? しかし、rpプロセスの「観測量」としては、

X線バーストの光度曲線がより重要?

(p,y)

β⁺

まとめ

・経路上の核反応の不定性が大きい

・<u>モンテカルロ元素合成による解析</u>

- ・1 zoneモデルでのポストプロセス
- ・不定性を定量的に評価し、"key reactions"を同定
 - ・トリプルα:rpプロセスの根元→広範囲のインパクト
 - ・rpプロセスの終点付近(SnSbTeサイクル)

·<u>今後の課題</u>

- ・「生成物」だけではなく、光度曲線との関連を
- ・ポストプロセスの枠を外せるか?
 - ・X線バーストモデル計算とカップル

<u>「中性子星を考慮したバーストモデル」に向けて</u>

- 1D X線バーストモデルの結果 (Dohi, NN et al.)
- ・ 元素合成は近似ネットワークで計算(88核種)
 → 土肥さんトーク

→ 中性子星の物理量によって変わりうる。