~中性子星の観測と理論~研究活性化ワークショップ 2021

# Neutron Star Crusts and Entrainment Effects

# Kei Iida (Kochi University)

Contents

- Introduction: Matter in the crust of a neutron star
- Pulsar glitches and magnetar quasiperiodic oscillations (QPOs)
- Trapped cold atoms as quantum simulators
- Working group on entrainment effects in A3 foresight project
- More on magnetar QPOs



## **Schematic phase diagram of dense matter**



By Fukushima



#### **Systems composed of nuclear matter**



Pethick & Ravenhall, ARNPS 45 (1995) 429.

#### **Microscopic EOS calculations**



#### **Microscopic EOS calculations (contd.)**

#### Pure neutron matter



Ref. Carlson and Reddy, PRL 95 (2005) 060401.

#### **Phenomenological EOS parameters**

Energy per nucleon of bulk nuclear matter near the saturation point (nucleon density *n*, neutron excess  $\alpha$ ):

$$w = w_0 + \frac{K_0}{18n_0^2}(n - n_0)^2 + \left[S_0 + \frac{L}{3n_0}(n - n_0)\right]\alpha^2$$

- $n_0, w_0$  saturation density & energy of symmetric nuclear matter
- $S_0$  symmetry energy coefficient

*K*<sub>0</sub> incompressibility

*L* density symmetry coefficient



Proton with electric charge switched off



L is still uncertain, but controls various properties of neutron star crusts!

# constraints on L



• most of constraints on  $\mathcal{L}$  predict around  $40 \leq \mathcal{L} \leq 80 \text{ MeV}$ 

#### <u>Nuclear pasta as liquid crystals</u>



The larger L, the narrower pasta region. Re

Ref. Oyamatsu & Iida, PRC 75 (2007) 015801.

## Pulsar glitch

From young pulsars, glitches, sudden decrease in the pulse period, are frequently observed.



Consistent with backreaction to disappearance of outwardly moving vortices, suggesting that superfluidity should occur in a neutron star!

Vortices in rotating superfluid helium (Yarmchuk et al.(1979))

## **Charged component vs. neutron superfluid component**

Superfluid component:  $\mathbf{V}_n \cong \Omega_n \times \mathbf{R}$  (uniform rotation) by a vortex lattice Charged component: rotating with the pulsar frequency  $\Omega$  ( $\leq \Omega_n$ )



Ref. J.A. Sauls (1989)

### How to "brake" the neutron superfluid in the inter-glitch interval

The superfluid component has to slow down via coupling with a lattice of nuclei in the inter-glitch interval.

Conventional picture: →drag on unpinned vortices (dissipative)



 $I_{\rm n}/I \sim 0.01$  (Vela)

Alternative picture: perfect pinning and entrainment effect (dissipationless)

Charged:  

$$I_c \dot{\Omega} - (I_n - I_n^f)(\dot{\Omega} - \dot{\Omega}_n) = -\alpha$$
  
Superfluid:  
 $\dot{J}_n = I_n \dot{\Omega}_n + (I_n - I_n^f)(\dot{\Omega} - \dot{\Omega}_n) = 0$ 

Caveat: Bragg scattering suppressed for quasiparticles (ph superpositions)

Charged:  $I_c \dot{\Omega} = -\alpha - \frac{I_c (\Omega - \Omega_n)}{\tau_c}$ 

Superfluid:  $I_n \dot{\Omega}_n = \frac{I_c (\Omega - \Omega_n)}{\tau}$ 



Watanabe & Pethick (2017).



A significant fraction of dripped neutrons is in filled bands and thus comoves with nuclei.

Crust is not enough as a superfluid reservoir?

 $I_{\rm n}/I \sim 0.1$  (Vela)

#### How a neutron vortex is pinned in a crust?



FIG. 2. (Color online) Dynamics of the system for times corresponding to small vortex-nucleus separations for neutron matter density  $n = 0.014 \text{ fm}^{-3}$  (top) and  $0.031 \text{ fm}^{-3}$  (bottom). Frames from left to right correspond to times  $(10, 12, 14, 16) \times 1,000 \text{ fm}/c$  (for full movies see [16]). Blue line indicates the vortex core position extracted from the order parameter  $\Delta$  (see [16] for details). Red dot indicates position of the center of mass of protons. The vector attached to the red dot denotes the vortex-nucleus force  $\mathbf{F}(R)$ . Vectors attached to the vortex indicate contributions to the force  $-d\mathbf{F}$  extracted from force per unit length, see Eq. (3) and inset (a) of Fig. 3. They are scaled by factor 3 for better visibility. Projections of the view are shown on sides of the box. Red dashed lines denote shape of nucleus (defined as a point where density of protons drops to value 0.005 fm<sup>-3</sup>). By blue triangles (on XY-plane) trajectory of the vortex up to given time is shown.

#### Ref. Wlazłowski, Sekizawa et al., PRL 117 (2016) 232701 (2016)



X-ray light curve of the SGR 1806-20 giant flare



**QPOs in giant flares from SGRs (contd.)** 

Possible identification of the observed QPOs as manifestations of global torsional shear oscillations in a neutron star crust





#### Equilibrium nuclear size in the inner crust of a neutron star



Ref. Oyamatsu & Iida, PRC 75 (2007) 015801.

#### **Constraint on** *L* **from crustal torsional oscillation frequencies**

Ref. Sotani, Nakazato, Iida, & Oyamatsu, arXiv:1202.6242.



## **Effects of superfluidity on crustal oscillations**



#### Neutron band structure



#### Chamel (2012).



Superfluid neutrons are coupled with a lattice of nuclei.

Sotani et al. (2012).

## Neutron matter and trapped cold atoms

#### Low density neutron matter

#### Cold Fermi atoms near Feshbach resonance



#### From M.W. Zwierlein.



From M.-G. Hu et al., PRL 117 (2016) 055301.

Rb thermal gas





H. Moriya et al., arXiv:2106.14469.

## **Possible emergence of Cooper triples in quark matter**

#### By Fukushima



# A3 foresight program: Various Manifestations of Nuclear Structure ------From Nucleons to Nuclear Matter at Extreme Conditions

Working group: G. Watanabe, Y. Minami (Zhejiang), T. Nakatsukasa (Tsukuba), M. Matsuo, T. Sasaki (Niigata), K. Sekizawa (TIT), K. Iida (Kochi)...



Anti-entrainment due to negative effective mass





Okihashi & Matsuo (2019).

# **Amorphous effects on the superfluid density**





FIG. 1. The transport *mfp*,  $\ell$ , for neutrons in an amorphous nuclear solid crust is shown with the blue line as a function of neutron density. The *mfp* varies from  $\ell_{\text{max}} = 4360 \text{ fm}$  at low density to  $\ell_{\text{min}} = 80 \text{ fm}$  at high density. The corresponding pair-breaking parameter,  $\alpha = \frac{\pi}{2} \xi_0 / \ell$ , is shown as the red line.

FIG. 2. Suppression of the zero-temperature neutron superfluid density in an amorphous crust (red line). The blue line,  $n_s = n$ , is for pure neutron matter at T = 0. The prediction from Ref. 19 of the conducting neutron density,  $n_c = n \times m_n/m_n^*$ , obtained from the band effective mass ratio for a bcc crystal of nuclei, is shown with black diamonds. The shaded region is where the pure neutron superfluid coherence length is *less* than the distance between nuclei.

#### Sauls, Chamel, & Alpar (2020).

#### More on magnetar QPOs: Bayesian QPO analysis and "lasagna-sandwich" model



More on magnetar QPOs: Bayesian QPO analysis and "lasagna-sandwich" model







condensed matter properties (polycrystalline disordered lattice, entrainment effects, etc.)