Magnetic field confined by elasticity in neutron star crust

- YK & Suzuki(2020) arXiv:2004.08006 MNRAS(2020)
- YK, Kisaka & Fujisawa(2021) arXiv:2011.03239 MNRAS(2021)
- YK, Kisaka & Fujisawa(2021) arXiv:2106.14337 MNRAS(2021) in press

~中性子星の観測と理論~研究活性化ワークショップ 2021 2021年8月10-12日 Online

Magnetic field confined in crust

Working hypothesis

Outer part ($\Delta r/R$ <0.1) of NS

-> CCO(Magnetar)-> Formation ? Matsumoto-san's talk

- Core $\rho = 1.4 \times 10^{14} g/cm^3$ nuclear density Pressure $p=3 \times 10^{33} erg/cm^3$
 - Max. B $B < 2 \times 10^{17} G$ ~ Mev/fm^3
- Outer BC $\rho = 4 \times 10^{11} g/cm^3$ neutron drip / Solid crust Pressure $p=5 \times 10^{29} erg/cm^3$ Max. B $B < 3 \times 10^{15}G$ (enough) ~ kev/fm^3 Shear $\mu=3 \times 10^{27} \rightarrow 10^{30} erg/cm^3$

-> Deformation of NS "Mountain"

Core vs crustal field

<u>Core physics may appear via crust</u> <u>Crust first!</u> <u>Negative -> Core next!</u>

- Complicated treatment for core physics
 Many species(e,n,p,...) superfluid/superconductor +....
- Simple and possible observational consequence for crust case Ion lattice + e -> B-<u>evolution</u> by Hall drift & Joule loss <u>Deformation</u> of crust, "mountain on NS"

-> GW?

Beyond limit <u>Fracture</u> or not? -> Observational events?

-> <u>Quake</u>? Models of <u>FRB</u>?

-> Plastic flow? Effect on magnetic field evolution (YK+20,21)

Outline of my talk

Ito-san's talk

---->

- 1. (Introduction) Braking strain of solid
- 2. Astrophysical consequences
 - -> A mountain on NS by elastic or magnetic forces
 - -> GW? (Brief review)

Deformation induced by magnetic evolution (YK+,21a)

- 3. Equilibrium of magnetized crust (NEW) (YK+,21b)
- Observation consequences beyond threshold
 - -> Quake? Models of FRB?
 - -> Plastic flow?

Some discussion in literature by speculation, but is omitted here

Breaking strain of solid crystals

• Material property in high density regime Crust of NS($\rho \approx 10^{11} - 10^{14}g/cm^3$) outer part < 1km thick pressure($p \approx 10^{29} - 10^{33}erg/cm^3$) $\sigma_{ij} = \nabla_i \xi_j + \nabla_j \xi_i - \frac{2}{3}g_{ij}(\nabla \cdot \xi), h_i = \nabla_j \left(\mu \sigma_i^j\right)$

shear modulus $\mu \sim \rho$ Limit of strain

- Experimental approach is impossible (at present)
- Theory (Analytic $\sigma_c \sim 0.01$ /Numerical $\sigma_c \sim 0.1$)
- Beyond it , plastic flow or quake
- Possibly it is checked in astrophysical object

 σ_{c}

Breaking strain

"Introduction to Solid State Physics"

Charles Kitell

 $\sigma_c = 10^{-2}$ to 10^{-5} 1/6 for an ideal case

表 18・1 ずれ弾性率と弾性限度の比較(Mott による)

	ずれ弾性率G [dyn/cm ²]	弹性限度 σ _c [dyn/cm ²]	$\frac{G}{\sigma_c}$
Sn (単結品)	1.9×10^{11}	1.3×10^{7}	15 000
Ag (単結晶)	2.8×10^{11}	6×10^{6}	45 000
Al (単結晶)	2.5×10^{11}	4×10^{6}	60 000
Al(純粋,多結晶)	2.5×10 ¹¹	2.6×10^{8}	900
Al (市販圧延品)	$\sim 2.5 \times 10^{11}$	9.9×10^{8}	250
ジュラルミン	$\sim 2.5 \times 10^{11}$	3.6×10^{9}	70
Fe(献, 多結晶)	7.7×10^{11}	1.5×10^{9}	500
炭素鋼 (熱処理)	$\sim 8 \times 10^{11}$	6.5×10^{9}	120
ニッケル・クロム鋼	$\sim 8 \times 10^{11}$	1.2×10^{10}	65

Molecular dynamics simulation Horowitz + (09)PRL102,191102

 $\sigma_c = 0.1$

Mountain on NS

e.g. Haskell +(06) Johnson-McDaniel +(13)

• Pressure in crust $p=10^{29} - 10^{33} erg/cm^3$

Ellipticity estimated by pressure or energy ratio

- Mountain supported by elastic force $\varepsilon \approx \mu \sigma_c (4\pi R^2 \Delta R)/(GM^2/R) \approx 10^{-6}$ for $\mu = 10^{30} erg/cm^3$ Detailed calculations in literature, e.g, elastic mountain 10^{-8} (Gittens+ 21)
- Mountain supported by magnetic force
- $\varepsilon \approx B^2 R^3 / (GM^2/R) \approx 10^{-6}$ for $B = 10^{14} G$

Ellipticity(deformation) of NS will be observed by GW

Magnetic deformation of NS revisited

Suvorov+(16) proposed large deformation $\sim \frac{10^{-6}}{10}$ induced by Hall evolution in normal radio pulsars B $\sim 10^{12}$ G

Current upper limit of ellipticity $<3x10^{-5}$ (-> next silde)

Table 5. Comparison of our models with observational limits of seven selected pulsars, for which $h_0 \leq 4h_0^{sd}$ (Aasi et al. 2014). | B_s | and τ_c were computed from data given in Aasi et al. (2014). The fourth column shows the observational upper limits on ϵ from LIGO and Virgo (Aasi et al. 2014), the fifth column shows ϵ as predicted by the AL model, and the sixth column shows ϵ as predicted by the BL model. **Suvorov+ MNRAS(16)**

Pulsar	$ B_{\rm s} $ (10 ¹² G)	$\tau_{\rm c}$ (yr)	Obs. limit $ \epsilon $	AL-predicted $ \epsilon $	BL-predicted $ \epsilon $
				Two models	
J0534+2200 (Crab)	1.84	1.3×10^{4}	8.6×10^{-5}	9.6×10^{-10}	2.9×10^{-7}
J0537-6910	1.42	4.9×10^{3}	1.2×10^{-4}	5.8×10^{-8}	3.2×10^{-8}
J1813-1246	1.43	4.3×10^{4}	3.5×10^{-4}	9.6×10^{-10}	2.9×10^{-7}
J1833-1034	5.52	4.8×10^{3}	5.7×10^{-3}	5.8×10^{-8}	3.2×10^{-8}
J1913+1011	0.54	1.7×10^{5}	2.2×10^{-4}	1.3×10^{-8}	2.6×10^{-6}
J0835-4510 (Vela)	5.26	1.1×10^{4}	6.0×10^{-4}	9.6×10^{-10}	2.9×10^{-7}
J1952+3252	0.74	1.1×10^5	3.0×10^{-4}	1.3×10^{-8}	2.6×10^{-6}

References Upper limit from GW

• <u>Crab</u> <u>J0534+2200</u>

Ellipticity <1x10^{-5} LIGO/Virgo O2

• <u>B1951+32/J1952+3252</u>

Ellipticity <2x10^{-5} LIGO/Virgo O2

B. P. Abbott et al 2019 ApJ 879 10

• <u>PSR0537 - 6910</u>

Ellipticity <3x10^{-5} LIGO/Virgo O3(2020 Oct)

Arxiv2012.12926

Our theoretical results

Right figure shows evolution of ellipticity for three models

Unfortunately for GW community, our quadrupole deformation is $\sim 10^{\{-8\}}$

mass moment

- Deformation in shape and that in quadrupole moment are different Shape deformation in crust is ~ 3x10^{-5}
- Different model/treatment

=> Large deformation by core field

Is elastic force effective for mag. confinement?

In crust
$$\rho = 4 \times 10^{11} - 1.4 \times 10^{14} g/cm^3$$

 $p = 5 \times 10^{29} - 3 \times 10^{33} erg/cm^3 \sim B^2$
Shear $\mu = 3 \times 10^{27} - 10^{30} erg/cm^3 \mu/p \sim 10^{-2} - 10^{-3}$
Elastic force is too small

✓ Magnetic energy is

 $E_B \sim 10^{46} (B_{14})^2 erg$ (which depends on geometry) enough to activities

✓ Elastic energy is

 $E_{els} \sim 10^{44} \, \bar{\mu} (\sigma_c / 0.1)^2 erg$

Solution for stability of magnetized neutron star

Mixed poloidal-toroidal fields are stable in conjecture, but toroidal- dominated models are not yet calculated.

See also Bera + (20)

Unimportant!

A pitfall in argument

Magneto-elastic equilibrium of a neutron-star crust

- Static equilibrium determined by
- $\nabla (T_{grav} + T_{fluid} + T_{mag} + T_{ela}) = 0$
- $|T_{grav}| \sim |T_{fluid}| \gg |T_{mag}|, |T_{ela}|$
- Vector decomposition of the Lorentz force Irrotational + Solenoidal vector $(f = -\nabla F + \nabla \times A)$
- Solenoidal part is balanced with elastic force
- Irrotational part is balanced with dominant forces

A large amount of mag. E stored

Magnetic field and elastic displacement

Crust depth enlarged by a factor 5

Summary

- Implication of magneto-elastic equilibrium
 - -> Effective /stable confinement of magnetic field in crust Large toroidal magnetic field is also allowed
 Mixed toroidal-poloidal field may be realized in NS case.
 => Core field for magnetars?
 - (-> never justify magnetar burst+ evolution models)
- Braking strain $\sigma_c \sim 0.1$? by theory How do we check? We may discuss it in astrophysical objects/events, after lots of theoretical studies, e.g, effect of magnetic field.