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Off-nuclear, compact, X-ray sources of which X-ray
luminosity exceeds the Eddington luminosity for
the stellar mass black holes, ~ 10%° erg s7'.

It has been thought to be either

- stellar mass black hole + Supercritical accretion

(King+2001, Watarai+2001, - - )

or

- Intermediate-mass black hole + Sub-Eddington accretion
(Colbert & Mushotzky 1999, Makishima+2000, - - )

However, it has not been settled yet . ..



Ultra-Luminous X-ray Pulsar (ULX Pulsar)

The central objects of some ULXs turned out to be neutron stars (NSs)
since recent X-ray observations detected the pulsed emission.
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- The mass of NSs is (1.4 — 3)M,,, and therefore the matter should accrete
at the super-critical rate where the mass accretion rate exceeds the
Eddington accretion rate, Mgy, ~ 107 g s7.

* There are still debates on the magnetic field strength in ULX Pulsars,
from 10!° G (see e.g., King + 2017) to 10" G (see e.g., Mushtukov+2015).



The theoretical model of ULX Pulsars
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The theoretical model of ULX Pulsars
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- If the magnetic axis is misaligned with the
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Hydrodynamical Simulations around magnetized NSs

- {exceeds the Eddington luminosity.
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Outflows driven by super-critical accretions
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(See also, Kosec et al. 2018, Pinto et al. 2016, 2017; Walton et al. 2016)



Outflows driven by super-critical accretions
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However, it has not been mvestlgated yet

whether super-critical accretion flows onto the|~

__|magnetized NSs can reproduce the radiation | =

spectrum and the outflow velocity observed in
ULX Pulsars or not.

Blackbody temperature : 0.bkeV , Blackbody radius : 100-500km
Blueshifted (0.1c-0.2c) absorption line

(See also, Kosec et al. 2018, Pinto et al. 2016, 2017; Walton et al. 2016)



Questions in ULX Pulsars

(MCan super-critical column accretion flows explain pulse profiles
observed in ULX Pulsars?

@ls it possible to reproduce outflow temperatures and outflow
velocities observed in ULX pulsars with super-critical accretion
flows onto magnetized NSs?

* Numerical simulations

We perform that

,@radlatlve transfer simulations using simulation results in Kawashima
' et al. 2016 to calculate the pulse profile (Inoue et al. 2020).
@general relativistic radiation magneto-hydrodynamical simulations to

‘

investigate the mechanisms of outflows (but 2D simulation).

i These make it possible to limit the physical quantities (mass accretion rate, etc.) that?

fcannot be directly observed as well as to investigate the validity of the theoretical

tmodel obtained by numerical simulation.
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Pulse profile calculated
from super-critical column accretions

(Inoue et al. 2020)



Radiative transfer simulations

The geodesic equation for light (Schwarzschild metric)

d2
dg?

1

r

1
4+ —
r

37,

1

(

Intensity, Isotropic Luminosity

)

\ 4
Light bending effect

BO
Iobs —
(1+2)*
B, : black body intensity

Rotation axis,f’

IRay tracing

magnetic axis

21km x 21km

€= 71 The direction cosine of light

4= 1)) The gas velocity vector at
the side wall of the column

Lobs = 4r Z IobsdA

—— summation for all pixels

Relativistic Effect
V-n

"

Gravitational redshift

C

)

See Inoue et al. 2020
for detailed conditions

BLACK-HOLE ACCRETION DISK
S,Kato J,Fukue S,Mineshige(1998)

Relativistic doppler effect




Model and assumptions

* We employ the profiles of

the temperature and the Magnetic axis

velocity obtained by the Rotation axis

radiation hydrodynamics OB 2y |

simulation (Kawashima et U o /q
al. 20106). The area here shines ‘\ observer

: _ particularly brightly
 The accretion column is

steady and axisymmetric
with respect to the

magnetic axis. Neutron Star

- radius : 10km
-mass : 1.4M

* The column is very
optically thick. Thus, the
side wall of the column is

Accretion column

: . .+ The region near the neutron star
* Outside of the accretion shines brighter
columns is almost vacuum | (Within approximately 3km )

(very optically thin). - Optically thick enough



Intensity map
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* Super-critical column accretion model can exhibit the X-ray
pulse via the precession of the column.
* The resulting PF can reach up to 60%.

Pulse profiles and pulsed fraction obtained in this study are
consistent with most observations in ULX Pulsars.



Outflow mechanisms in super-critical
accretion onto magnetized NSs
(Inoue et al. in prep)



p mass density, u* four velocity of the gas

g determinant of metric, B’ magnetic three vector

GR-RMHD equation
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« We use the GR-RMHD code UWABAMI (Takahashi & Ohsuga 2017)
« Schwarzschild Metric are employed.
- The magnetic axis coincides with the rotation axis (Axisymmetric structure).



Set up i Radiation

energy density

Computational domain : r = [Rys, 2800Rys|, ¢ = |0, 7|
Grid number : (N,, Ny, N,) = (450, 300, 1)

Neutron Star (NS)

- Mass 1.4 M, - Radius 10km

- magnetic dipole field

- The boundary condition at the NS surface 200
Gases are adsorbed on the NS surface 200 -100

(Eauiorium torus

Radiation fields become isotropic o v N A
logyo (p/po) logq (E/poc?)
Equilibrium torus (Fishbone & Moncrief 1976) R, ~ 2.1 km

- Inner edge : 180km - pressure maximum of the torus : 250km
- We set the loop magnetic field in proportion to the density

Models
- B10d01 1 py=0.1 gem™, By=10G -B11d1l :py=1gcm™, By=10"1G
+B11d10: py=10gcm™, By=10"'G -B12d10:p,=10 gcm™, Bys=10%G

po - Maximum density of the initial torus, Byg : magnetic fields strength at NS surface



Magnetospheric radius
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Magnetospheric radius
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Outflows driven by supercritical accretion
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Resulting velocities are consistent with observed velocities (0.1c¢c-0.2c¢).

We investigate optically thick outflows in more detail, and it is
revealed that 3 types of optically thick outflows are formed.



3 types of optically thick outflows

The stream lines indicate optically thick outflows.
The difference in colors of the stream lines represents the difference in

driven mechanisms. Next slide
Small magnetosphere model Large magnetosphere model
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Stream lines of outflow 1 and outflow 3 are connected with an accretion column.
OQutflow 2 is launched from the accretion disk.

1073

We investigate driven mechanisms of 3 types of outflows.



Driven mechanisms of outflow 1 and 2

We calculate radiation forces, ) - unit vector along the stream lines
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Centrifugal force for u? effectively works as well as radiation force

Outflow 1 : radiation force driven
Outflow 2  radiation force + centrifugal force driven



Driven mechanisms of outflow 3

e

We calculate radiation forces, ) - unit vector along the stream lines
magnetic forces and centrifugal forces. | - Unit vector perpendicular to the stream lines

e » . S diasiosi = P o o =

the averaged value for stream lines of each outflows

Radiation force is dominant in r > 40 km.
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Magnetic forces support the accretion column (r < 50km) and
change the outflowing direction of outflow 3 (r > 50km) .

Outflow 3 is mainly driven by radiation forces, and magnetic
forces effectively work to change the outflowing direction.



Photospheres and outflow temperatures

Effective Photosphere (radial direction)
Radiation outside this line may be observed
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Three types of optically thick outflows form effective
photospheres above.



Comparison with Swift J0243.6+6124

We estimate the blackbody temperature and the blackbody radius

ng eff h her
using effective photosphe Tino = Tgus(r = Ripo)

Outﬂowtemperaures obtained |
lin our simulations are consistent with
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(from outflow 2) are consistent with the observed blackbody radius. |



We performed @ General-Relativistic radiative transfer simulations and
@ General-Relativistic Radiation MHD simulations of supercritical accretion
flows onto the magnetized neutron stars.
(D Resulting pulse profiles are consistent with observed data
iIn ULX pulsars
@ The resulting outflow velocity, temperature and blackbody radius are
consistent with the observed data in Swift J0243.6+6124.
Our present study supports the hypothesis that the ULX Pulsars are
powered by the super-critical column accretion on to magnetized NSs.
See Inoue et al. 2020 for @ in detail

General-Relativistic Radiation MHD simulations (@)
3 types of optically thick outflows exist :

Outflowing matter comes from both the disk and the accretion columns
Qutflow 1 (launched from the column) : radiation force driven
Outflow 2 (launched from the disk) . radiation force + centrifugal force driven
Outflow 3 (launched from the column) : radiation force driven




In this study, the magnetic field of the NS is assumed to be the
dipole field.

How much do pulse profiles, accretion flows and outflows depend on the
configuration of the magnetic field of the NS?

Is it possible to explain the radiation spectrum in ULXs or ULX
Pulsars with present models?

Radiative post-processing is required to obtain more detailed information
on the emerging radiation spectrum.

We need to perform 3-dimensional non-axisymmetric simulations in
order to calculate the pulse profile.

Non-axisymmetric accretion flows on to magnetized NSs are important Iin
ULX Pulsars.



