QCD, Dense EOS and Quark Matter in Neutron Stars

Tetsuo Hatsuda (RIKEN iTHEMS)

- 1. QCD
- 2. Hot Matter EOS
- 3. Dense Matter EOS
- 3. Implication to Neutron Stars
- 4. Summary

References

• Masuda, Hatsuda, Takatsuka, Astrophys. Journal <u>762</u>, 12 (2013); PTEP <u>2013</u>, 073 (2013)

- Baym, Hatsuda, Kojo, Powell, Song, Takatsuka, Rept. Prog. Phys. <u>81</u> (2018) 056902
- Baym, Furusawa, Hatsuda, Kojo, Togashi, Astrophys. Journal <u>885</u>, 42 (2019)
- Kojo, AAPPS Bulletin, (2021) 31:11

Neutron Star WS (Aug. 12, 2021)

QCD and Visible Matter

QCD (Quantum Chromo Dynamics) = SU(3) gauge theory for color charges (B, R, G)

$$\mathcal{L} = -\frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a + \bar{q} \gamma^\mu (i\partial_\mu - \mathbf{g} t^a A^a_\mu) q - \mathbf{m} \bar{q} q$$

Y. Nambu (1966)

Lattice QCD

K. Wilson (1974)

$$Z_{\text{QCD}} = \int [dU] [dqd\bar{q}] e^{-[S_{\text{glue}}(U) + \bar{q}F(U)q]}$$
$$= \int [dU] \det F(U) e^{-S_{\text{glue}}(U)} = \int [dU] e^{-S_{\text{eff}}(U)} = \int [dUdP] e^{-\mathcal{H}_{\text{eff}}(U,P)}$$

D.Leinweber,http://www.physics.adelaide.edu.au/theory /staff/leinweber/VisualQCD/Nobel/index.html

Lattice QCD

K. Wilson (1974)

$$Z_{\text{QCD}} = \int [dU] [dqd\bar{q}] e^{-[S_{\text{glue}}(U) + \bar{q}F(U)q]}$$
$$= \int [dU] \det F(U) e^{-S_{\text{glue}}(U)} = \int [dU] e^{-S_{\text{eff}}(U)} = \int [dUdP] e^{-\mathcal{H}_{\text{eff}}(U,P)}$$

Fodor and Hoelbling, Rev. Mod. Phys. 84 (2012) 449

QCD Phases

Rept. Prog. Phys. <u>81</u> (2018) 056902

Early Universe time : $t \sim 10^{-4}$ sec temperature: $T > 10^{12}$ K baryon density : $\rho \sim 0$

 $\begin{array}{l} \mbox{Central core of neutron stars} \\ \mbox{temperature : } T < 10^{10} \mbox{ K} \\ \mbox{baryon density : } \rho > 10^{12} \mbox{ kg/cm}^3 \end{array}$

Relativistic heavy-ion collisions time : t ~ 10^{-22} sec temperature : T > 10^{12} K baryon density : $\rho \sim 0$

Baym, Hatsuda, Kojo, Powell, Song, Takatsuka, Rept. Prog. Phys. <u>81</u> (2018) 056902 Asakawa and Hatsuda, Phys. Rev. <u>D 55 (1997)</u> 4488

Real picture of hot EOS from lattice QCD

Application of hot EOS to heavy ion collisions

From QCD to Neutron Stars

Baym, Hatsuda, Kojo, Powell, Song, Takatsuka, Rept. Prog. Phys. <u>81</u> (2018) 056902

Baym and Chin, Phys. Lett. B62 (1976) 241 Masuda, Hatsuda, Takatsuka, Astrophys. Journal 762, 12 (2013); PTEP 2013, 073 (2013). Baym, Hatsuda, Kojo, Powell, Song, Takatsuka, Rept. Prog. Phys. <u>81</u> (2018) 056902

Extrapolations from both ends

Fujimoto & Fukushima, arXiv:2011.1089 [hep-ph]

No lattice QCD data due to sign problem

sign problem:

$$Z = \sum_{\{\phi(\mathbf{x})=\pm 1\}} \operatorname{sgn}(\phi) \ e^{-S(\phi)}$$

$$\left(Z_0 = \sum_{\{\phi(\mathbf{x})=\pm 1\}} e^{-S(\phi)}\right)$$

$$\langle \operatorname{sgn}(\phi) \rangle_0 = \frac{Z}{Z_0} = e^{-(f - f_0)V/T} \ll 1$$

$$\frac{\Delta \text{sgn}}{\langle \text{sgn} \rangle_0} = \frac{\sqrt{\langle \text{sgn}^2 \rangle_0 - \langle \text{sgn} \rangle_0^2}}{\sqrt{N} \langle \text{sgn} \rangle_0} \simeq \frac{e^{(f - f_0)V/T}}{\sqrt{N}} \ll 1 \quad \Longrightarrow \quad N \gg e^{2(f - f_0)V/T}$$

Dense QCD (T~0, µ large)

$$Z = \operatorname{Tr} \left[e^{-(H-\mu N)/T} \right] = \int [dA] \operatorname{Det} [\hat{D} + m + i\mu\gamma_4] e^{-S(A)}$$

Complex

Complete new idea necessary

Hadronic EOS → M-R reltion

Muto's talk

Burgio+, arXiv:2105.03747 [nucl-th]

Hybrid EOS (Hadron-quark crossover)

QHC19 : Baym, Furusawa, Hatsuda, Kojo, Togashi, Astrophysical Journal <u>885</u> (2019)

Cf. Masuda, Hatsuda, Takatsuka, Ap.J. <u>762</u>, 12 (2013);); PTEP <u>2013</u>, 073 (2013)

Hybrid EOS (Hadron-quark crossover)

QHC19 : Baym, Furusawa, Hatsuda, Kojo, Togashi, Astrophysical Journal <u>885</u> (2019)

Cf. Masuda, Hatsuda, Takatsuka, Ap.J. <u>762</u>, 12 (2013);); PTEP <u>2013</u>, 073 (2013) Equation of State with Quark-Hadron Crossover

QHC series : Baym, Furusawa, Hatsuda, Kojo, Togashi, Astrophysical Journal <u>885</u> (2019)

CompOSE <u>CompStar Online</u> <u>Supernovæ Equations of State</u>

Nparam 🔺	Name 🍦	Subgroup 🍦	Family 🍦	Particles 🛊	no min fm⁻³	fm ⁻³	nb pts 🛊	÷
1	QHC18	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeNq	8.7e-11	1.7	400	details
1	DD2_FRG (2+1 flavors)	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeNqqs	6.9e-10	2.7	230	details
1	DD2_FRG (2 flavors)	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeN q	6.9e-10	2.7	235	details
1	QHC19-A	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeNq	7.9e-11	1.8	183	details
1	QHC19-C	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeNq	7.9e-11	1.4	180	details
1	QHC19-D	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeNq	7.9e-11	1.3	179	details
1	QHC19-B	Hybrid (quark- hadron) EoS	Cold Neutron Star EoS	npeNq	7.9e-11	1.6	181	details

REVIEW ARTICLE

QCD equations of state and speed of sound in neutron stars

Toru Kojo

Fig. 2 Rough sketches of $P-\varepsilon$, M-R, and $c_s^2-n_B$ relations for three characteristic EoS; see the main text for details. For c_s^2 , we also show the typical behavior of nucleonic EoS with dashed lines

Binary neutron star: Post merger GW signal

Time-frequency analysis for the TM1 1.35+1.35 M_s waveform from a source at 50 Mpc

Clark+, Class. Quantum Grav. **33** (2016) 085003

Dominant post merger GW frequency f_{peak} as function of tidal deformability Λ for 1.35-1.35 M_s mergers

Bauswein +, PRL**122** (2019) 061102

Binary neutron star: Post merger trajectory

M=2.8M_s 1st order transition to quark matter

Most+, PRL**122** (2019) 061102

Heavy Ion Collisions: Trajectory at J-PARC

Figure taken from JHF report (2002) by A.Ohnishi

Summary

1. Global QCD phase structure has been studied extensively by using various theoretical methods.

Quantitative understanding above $2\rho_0$ is far from satisfactory.

- -- What kind of phases exit?
- -- What is the order of the hadron-quark transition ?
- -- New theoretical tools are called for.
- 2. Neutron star, neutron star mergers and HIC will continue to provide valuable information on high density matter.
- 3. It is time that experimentalists and theorists work more closely together to unravel the physics of dense QCD.
 -- as it happened in the case of QGP search.