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Important term in nuclear EOS : Symmetry energy
term to govern neutron star structure

𝐸𝐸 𝑇𝑇,𝜌𝜌, 𝛿𝛿 = 𝐸𝐸 𝑇𝑇,𝜌𝜌, 𝛿𝛿 = 0 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 (𝑇𝑇,𝜌𝜌)𝛿𝛿2 + 𝑂𝑂(𝛿𝛿4)
𝛿𝛿 = (𝜌𝜌𝑛𝑛 − 𝜌𝜌𝑝𝑝)/𝜌𝜌

𝛿𝛿 = 1, N=A

𝛿𝛿 = 0, N=Z

Symmetry Energy at ρ=ρ0 :S (or J)

arXiv:1303.0064

Slope :L

Incompressibility :K

soft

stiff

2ρ0: saturation density (~0.17fm-3)



• Large L ⇔ Small Esym in low ρ ⇔ Thick neutron skin
(neutron goes to outside (dilute side))

• Small L ⇔ Large Esym in low ρ ⇔ Thin neutron skin
• PREX exp.: Phys. Rev. Lett. 126 (2021) 172502

• Rn ~ Rw = 5.795 ± 0.082(exp) ± 0.013(theo) fm (1%)
• Rn – Rp = 0.278 ± 0.078(exp) ± 0.012(theo) fm (25%)
• δrnpL: 106±37 MeV
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Density distribution of protons
and neutrons in a nucleus

Experimental constraint of EoS
e.g. neutron skin thickness

PRL 126 (2021) 172503



A. Bauswein, S. Goriely, and H.-T. Janka,

APJ, 773, 21 (2013)

Constraint of nuclear EoS from tidal deformation of NS Merger

Stiff EoS
Small deformability

Soft EoS
Large deformability

Λ<800 (90% confidence)
GW170817 PRL 119 161101
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PHYSICAL REVIEW X 9, 031040 (2019)



Determination of L and J is not essential to see 
high dense neutron matter EoS

• Above saturation density, the symmetry energy density 
dependence may have a different energy dependence
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Pion condensation

x: proton fraction

Wiringa, Fiks, & Fabrocini 1988

ρ0

ρ0

Togashi EoS
Nucl. Phys. A 961 (2017) 78



δrnp probes the symmetry energy at ρ~0.1fm-3

• The region where the experimental constraint on EoS depends on the 
type of experimental constraint.

• Constraints based on nuclear structure information  ρ~ρ0 or more 
dilute matter.

from δrnp

σ of (n,p) reaction

DFT mass: Analysis of 
nuclear masses using DFT
PRC 87, 015806 (2013).

αD: 208Pb electric dipole 
polarizability
PRL 107, 062502 (2011).

Phys. Rev. Lett. 111, 232502 (2013).

Nucl. Phys. A 958, 147-186 (2017).
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Heavy ion collision (HIC) to probe high dense symmetry energy
 small (O(10fm)) but unique way to realize high dense matter in 
laboratory

• Plenty of heavy ion collision 
experiments were performed with 
stable nucleus, such as Au and Pb.

participant

spectator

Heavy Ion

Heavy Ion

Compressed matter

W. Cassing et al., Giessen: Hadron-String Dynamics (HSD): 
mean field, hadrons + resonances + strings

Baryon density in central cell (Au+Au, b=0 fm)

197.0
49.1/

=
=

δ
ZN197Au:

~10ρ0
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We need to rely on transport theory to reproduce heavy ion 
collisions  crucial issue to the study of EoS

• Transport theory: theoretical tool to describe the dynamics of 
heavy ion collision

• Quite difficult to reproduce the system of collision: mixture of 
equilibrium and non-equilibrium

• What we can observe experimentally from heavy ion collision is 
final state particles after freezing out of the system.

• Need to account for nuclear effect which cannot be reproduce 
with superposition of nucleon-nucleon collisions
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Simulate
HIC

Transport
theory EOS

Mean field U

Observables
In HIC



pion production in heavy ion collison: 
probing nuclear symmetry energy

10%

• Soft EOSlarge ρn/ρp in high dense regionlarge π- production

• If all of pions are produced through ∆ production, Y(π-)/Y(π+)≈(ρn/ρp)2

• In equilibrium state, μ(π+)-μ(π-)=2(μp-μn)

• Y(π-)/Y(π+) as well as Y(n)/Y(p)  good probe for nuclear EOS
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pion ratio probes the symmetry energy at ρ~1.5ρ0

Pion weighted density
Phys. Rev. C 103, 014616 (2021).
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• Experimental project to give a constrain on the density dependent symmetry energy 
mainly for higher dense region.

• Systematic measurements in same Z but different N systems realized with heavy RI 
beam.

• Control nuclear effect.
• ρ~2ρ0 nuclear matter at RIBF energy.

• Effect of symmetry energy on each observables is expected to be largest around this 
energy region. (especially pion emission)

• 1st experimental campaign using Sn (Z=50) isotopes finished successfully. 
• 2016 Apr. – Jun.
• Measurements were performed for 4 systems.

• 132Sn + 124Sn @Ebeam/A = 270 MeV(v/c~0.6), Yp=0.39
• 124Sn + 112Sn @Ebeam/A = 270 MeV(v/c~0.6), Yp=0.42
• 112Sn + 124Sn @Ebeam/A = 270 MeV(v/c~0.6), Yp=0.42
• 108Sn + 112Sn @Ebeam/A = 270 MeV(v/c~0.6), Yp=0.45

Heavy RI Collision program @RIKEN-RIBF
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BigRIPS

Neutron rich ion separator
Purification & identification of ion

U-238 345 MeV/u beam
Z=92、N=146
100pnA: 1011~12 Hz 

RIKEN-RIBF: RI production at world leading RI facility

1 frame: 1 collision

Accelerator



Result on pion multiplicity: number of pions
generated collision by collision
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Result on pion multiplicity: pion ratio

• Different assumptions regarding the mean field potentials for ∆
baryons and pions can influence the pion multiplicities.
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Observables
In HIC

Transport
theory EOS

Mean field U

Prediction with Theory
Assuming σNN and m*np

Feedback to Theory w/ exp. data
Determine nuclear effect (σNN and m*np)

Inconsistent within theories
Constrain EOS

Need feedback to transport theory to reduce the discrepancy 
among models.Simulate

HIC



High-momentum pion data: reduce the influence from the 
assumption for ∆/pion mean field potential

• Sensitivity to the isospin dependence of mean field dominates at high-pT.
• Neutron rich system 

shows more 
sensitivity at high-pT.

• Calculation 
underestimate at low-
pT.

Coulomb effect 
and/or non-resonant 
pion production.

42<L<117

dcQMD
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Compilation of experimentally determined symmetry energy

• Fitting with phenomenological formula: S0=(33.3±1.3) MeV, L= 
(59.6±22.1) MeV

• suggests a radius for a 1.4 solar mass neutron star of 13.1±0.6 km

DFT mass: Analysis of nuclear 
masses using DFT
PRC 87, 015806 (2013).

IAS: σ of (n,p) reaction
NPA 958, 147-186 (2017).

αD: 208Pb electric dipole 
polarizability
PRL 107, 062502 (2011).

arXiv:2106.10119v1

Fitting only with low density 
data
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Conclusion
• To give constraint on nuclear symmetry energy, pion production in neutron 

rich heavy ion collision was measured at RIKEN-RIBF.
• Pion production is expected to probe the symmetry energy at ρ~1.5*ρ0.

• According to the comparison of data with transport model: 42<L<117.
• We need to establish the sophisticated transport model to understand the 

collision dynamics and constrain the nuclear symmetry energy more 
precisely.

• Nuclear symmetry energy driven from the compilation of experimental 
data gives consistent result with the radius obtained with NICER.
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