重イオン衝突におけるパイオン測定を通した 対称エネルギー(Symmetry energy)の研究

Tadaaki Isobe RIKEN Nishina Center 2021/08/12 ~中性子星の観測と理論~研究活性化ワークショップ 2021

Important term in nuclear EOS : Symmetry energy term to govern neutron star structure

$$E(T,\rho,\delta) = E(T,\rho,\delta=0) + E_{sym} (T,\rho)\delta^{2} + O(\delta^{4})$$
$$\delta = (\rho_{n} - \rho_{p})/\rho$$

2

Experimental constraint of EoS e.g. neutron skin thickness

- Large L ⇔ Small E_{sym} in low ρ ⇔ Thick neutron skin (neutron goes to outside (dilute side))
- Small L \Leftrightarrow Large E_{sym} in low $\rho \Leftrightarrow$ Thin neutron skin
- PREX exp.: Phys. Rev. Lett. 126 (2021) 172502
 - Rn ~ Rw = $5.795 \pm 0.082(exp) \pm 0.013(theo)$ fm (1%)
 - $Rn Rp = 0.278 \pm 0.078(exp) \pm 0.012(theo) fm (25\%)$
 - $\delta r_{np} \rightarrow L$: 106 ± 37 MeV

Constraint of nuclear EoS from tidal deformation of NS Merger

Determination of L and J is not essential to see high dense neutron matter EoS

• Above saturation density, the symmetry energy density dependence may have a different energy dependence

δr_{np} probes the symmetry energy at $\rho{\sim}0.1 fm^{-3}$

DFT mass: Analysis of nuclear masses using DFT PRC 87, 015806 (2013).

 α_D : ²⁰⁸Pb electric dipole polarizability PRL 107, 062502 (2011).

- The region where the experimental constraint on EoS depends on the type of experimental constraint.
- Constraints based on nuclear structure information $\rightarrow \rho \sim \rho_0$ or more dilute matter.

Heavy ion collision (HIC) to probe high dense symmetry energy \rightarrow small (O(10fm)) but unique way to realize high dense matter in laboratory

We need to rely on transport theory to reproduce heavy ion collisions \rightarrow crucial issue to the study of EoS

- Transport theory: theoretical tool to describe the dynamics of heavy ion collision
 - Quite difficult to reproduce the system of collision: mixture of equilibrium and non-equilibrium
- What we can observe experimentally from heavy ion collision is final state particles after freezing out of the system.
- Need to account for nuclear effect which cannot be reproduce with superposition of nucleon-nucleon collisions

pion production in heavy ion collison: probing nuclear symmetry energy

- Soft EOS \rightarrow large ρ_n/ρ_p in high dense region \rightarrow large π^- production
- If all of pions are produced through Δ production, $Y(\pi^{-})/Y(\pi^{+}) \approx (\rho_n/\rho_p)^2$
 - In equilibrium state, $\mu(\pi^+)-\mu(\pi^-)=2(\mu_p-\mu_n)$
- $Y(\pi^{-})/Y(\pi^{+})$ as well as $Y(n)/Y(p) \rightarrow good probe for nuclear EOS$

9

pion ratio probes the symmetry energy at $\rho \sim 1.5 \rho_0$

Heavy RI Collision program @RIKEN-RIBF

- Experimental project to give a constrain on the density dependent symmetry energy mainly for higher dense region.
- Systematic measurements in same Z but different N systems realized with heavy RI beam.
 - Control nuclear effect.
 - $\rho \sim 2\rho_0$ nuclear matter at RIBF energy.
- Effect of symmetry energy on each observables is expected to be largest around this energy region. (especially pion emission)
- 1st experimental campaign using Sn (Z=50) isotopes finished successfully.
 - 2016 Apr. Jun.
 - Measurements were performed for 4 systems.
 - ${}^{132}Sn + {}^{124}Sn @E_{beam}/A = 270 MeV(v/c~0.6), Yp=0.39$
 - ${}^{124}Sn + {}^{112}Sn @E_{beam}/A = 270 MeV(v/c~0.6), Yp=0.42$
 - ${}^{112}Sn + {}^{124}Sn @E_{beam}/A = 270 MeV(v/c~0.6), Yp=0.42$
 - 108 Sn + 112 Sn @E_{beam}/A = 270 MeV(v/c~0.6), Yp=0.45

Result on pion multiplicity: number of pions generated collision by collision

Result on pion multiplicity: pion ratio

- Different assumptions regarding the mean field potentials for Δ baryons and pions can influence the pion multiplicities.

High-momentum pion data: reduce the influence from the assumption for Δ /pion mean field potential

• Sensitivity to the isospin dependence of mean field dominates at high-pT.

- Neutron rich system shows more sensitivity at high-pT.
- Calculation underestimate at lowpT.

→Coulomb effect and/or non-resonant pion production.

Compilation of experimentally determined symmetry energy

- Fitting with phenomenological formula: S₀=(33.3 \pm 1.3) MeV, L= (59.6 \pm 22.1) MeV
 - suggests a radius for a 1.4 solar mass neutron star of 13.1 ± 0.6 km

Conclusion

- To give constraint on nuclear symmetry energy, pion production in neutron rich heavy ion collision was measured at RIKEN-RIBF.
- Pion production is expected to probe the symmetry energy at $\rho \sim 1.5^* \rho_0$.
- According to the comparison of data with transport model: 42<L<117.
- We need to establish the sophisticated transport model to understand the collision dynamics and constrain the nuclear symmetry energy more precisely.
- Nuclear symmetry energy driven from the compilation of experimental data gives consistent result with the radius obtained with NICER.