Stiffening of matter in quark-hadron continuity
 --- peak in sound velocity ---

Toru Kojo

(Central China Normal University)

Ref) TK, $\underline{2106.06687 \text { [nucl-th] }}$

A picture being developed

EoS \& Neutron Star M-R relation

Einstein eq.: $\quad G_{\mu \nu}+\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu .}$ QCD (+EW) EoS
$\uparrow P$ soft-to-stiff

$M / M_{\odot} \uparrow$

| |
| :---: | :---: | :---: |

Ref) Lattimer \& Prakash (200I)
based on

NICER

J0740+6620 data + J0030+045I data

+ GWI708I7
+ nuclear constraints
[Miller+ '21]

$$
R_{2.08} \sim R_{1.40}
$$

radical softening unlikely for 2-5 n_{0}

Soft to stiff is challenging

$$
\text { speed of sound: } \mathrm{c}_{\mathrm{s}}^{2}=\mathrm{dP} / \mathrm{d} \varepsilon<\mathrm{I} \text { (causality) }
$$

the simplest: quark-hadron continuity
\rightarrow we take it as our baseline

Goals in this work

Direct descriptions of the " c_{s}-peak"

[cf) McLerran-Reddy (MR), PRL 'I9,...]

the statements include:

I) robust in a quark-hadron continuity model
2) appears before baryon cores overlap
3) nuclear repulsive forces are NOT major driving forces
[nuclear int. will be ignored at LO]

Problem

Switching from baryonic to quark bases

\rightarrow source of confusions in hybrid modeling
(e.g. normalization of energy)

Strategy

Follow quark states from nuclear to quark matter (within a single model)

Quarks in a baryon $N_{c}(=3)$: number of colors
p_{3}
probability density:

$$
Q_{\mathrm{in}}\left(\boldsymbol{p}, \boldsymbol{P}_{B}\right)=\mathcal{N} \mathrm{e}^{-\frac{1}{\Lambda^{2}}\left(\boldsymbol{p}-\frac{\boldsymbol{P}_{B}}{N_{\mathrm{c}}}\right)^{2}}
$$

p_{2}

mean: $\quad\left\langle\boldsymbol{P}_{B}\right\rangle=N_{\mathrm{c}} \int_{\boldsymbol{p}} \boldsymbol{p} Q_{\mathrm{in}}\left(\boldsymbol{p}, \boldsymbol{P}_{B}\right)$
variance: $\left\langle\left(\boldsymbol{p}-\frac{\boldsymbol{P}_{B}}{N_{\mathrm{c}}}\right)^{2}\right\rangle \sim \Lambda^{2} \quad$ energetic!
$\left\langle E_{q}(\boldsymbol{p})\right\rangle_{\boldsymbol{P}_{B}}=\mathcal{N} \int_{\boldsymbol{p}} E_{q}(\boldsymbol{p}) \mathrm{e}^{-\frac{1}{\Lambda^{2}}\left(\boldsymbol{p}-\frac{\boldsymbol{P}_{B}}{N_{\mathrm{c}}}\right)^{2}} \underset{\text { average energy (quark) }}{\simeq\left\langle E_{q}(\boldsymbol{p})\right\rangle_{\boldsymbol{P}_{B}=0}}+\frac{\frac{1}{6}\left\langle\frac{\partial^{2} E_{q}}{\partial p_{i} \partial p_{i}}\right\rangle_{\boldsymbol{P}_{B}=0}\left(\frac{\boldsymbol{P}_{B}}{N_{\mathrm{c}}}\right)^{2}}{\times N_{\mathrm{c}}}+\cdots . \quad \times \mathrm{N}_{\mathrm{c}}$

$$
\sim N_{c}\left(M_{q}+\Lambda\right) \quad>\quad \sim P_{B}^{2} /\left(N_{c} E_{q}\right)
$$

Occupation probability of quark states

quark mom. pro. density in a baryon
occupation probability of quark state with p
occupation probability of baryon state with P_{B}

$$
\left.f_{q}\left(\underline{p} ; n_{B}\right)=\int_{\underline{\boldsymbol{P}_{B}}} \mathcal{B}\left(\underline{P_{B}} ; n_{B}\right) Q_{\mathrm{in}} \underline{(\underline{\boldsymbol{p}},} \frac{\boldsymbol{P}_{B}}{\uparrow}\right)
$$

e.g.) in dilute baryonic matter

Quarks in ideal baryon gas $f_{q}\left(p ; n_{B}\right)=\int_{P_{B}} \mathcal{B}\left(P_{B} ; n_{B}\right) Q_{\text {in }}\left(\boldsymbol{p}, P_{B}\right)$

for ideal baryon gas:

$$
f_{q}\left(p ; n_{B}\right)=\frac{n_{B}}{n_{B}^{c}}-\mathrm{e}^{2} / \Lambda^{2}+O\left(1 / N_{\mathrm{c}}^{2}\right)
$$

- the shape does not change
- the height grows linearly in n_{B}

energy density

$$
\varepsilon\left(n_{B}\right)=N_{\mathrm{c}} \int_{\mathbf{p}} E_{q}(p)\left(f_{q}^{\mathrm{LO}}\left(p ; n_{B}\right)+O\left(1 / N_{\mathrm{c}}^{2}\right)\right)=n_{B} M_{B}+\underset{\text { kin. energy }}{O\left(1 / N_{\mathrm{c}}\right)}
$$

$$
\text { pressure: } \quad \mathcal{P}=n_{B}^{2} \frac{\partial\left(\varepsilon_{B}\right)}{\sim \text { const. }} / \partial n_{B} \sim 0+\bigcirc\left(\| / N_{c}\right)
$$

Saturation of quark states

p
$\sim \wedge$

$$
\wedge \sim 0.15-0.35 \mathrm{GeV} \rightarrow \mathrm{n}_{\mathrm{B}}{ }^{\mathrm{C}} \sim 0.2-3.5 \mathrm{n}_{0}
$$

should happen before baryon cores overlap
cf) Soft Deconfinement [Fukushima-TK-Weise, '20]

Quark matter formation: $f_{q}\left(p ; n_{B}\right)$

a model after the saturation:
same shape

$$
f_{q}^{\text {after }}=\theta\left(p_{\mathrm{sat}}-p\right)+\theta\left(p-p_{\mathrm{sat}}\right) f_{q}\left(p-p_{\mathrm{sat}} ; n_{B}^{c}\right)
$$

ε, n_{B} are continuous before and after the saturation. any nontrivial consequences?

a model of f_{q} looks innocent, but its consequence is unphysical:
ε, n_{B} are continuous, jumps in $\mu_{B} \& P$

$$
\left(\Delta \mu_{B} \sim N_{C} \wedge\right)
$$

opposite to usual Ist order P.T. (!)

Quark matter formation: EoS

$$
\mathcal{P}=n_{B}^{2} \frac{\partial}{\partial n_{B}}{\left.\underline{\left(\frac{\varepsilon}{n_{B}}\right.}\right)}_{\text {energy per particle }}^{\text {[cf) McLerran-Reddy (MR), PRL 'I9,...] }}
$$

$\sim \Lambda$

$$
\begin{aligned}
\varepsilon & \sim n_{B} \times N_{\mathrm{c}} \Lambda_{\mathrm{QCD}} \\
\mathcal{P} & \sim n_{B}^{5 / 3} / \underline{N_{\mathrm{C}}} \Lambda_{\mathrm{QCD}}
\end{aligned}
$$

More realistic picture $\quad\left[P_{B} \& P_{Q}\right.$ from a single model; f_{q} continuous]

Smooth version

$$
f_{q}^{\mathrm{sat}}\left(p ; p_{\text {sat }}\right)=\underline{\tanh \left(p_{\text {sat }} / p_{w}\right)} \times\left[\theta\left(p_{\text {sat }}-p\right)+\theta\left(p-p_{\text {sat }}\right) \mathrm{e}^{-\left(\tilde{p}-\tilde{p}_{\text {sat }}\right)^{2}}\right]
$$

- location primarily determined by \wedge (or baryon size)
- width primarily determined by p_{w} (or interactions)
- interactions: NOT driving forces, just temper the peak
quark energy; parameterization of MF

$$
\begin{gathered}
\qquad \mathcal{V}_{\mathrm{CE}}\left[f_{q}\right]=-C_{E}^{\mathcal{A}} \times\left(1-\underline{f_{q}^{\beta}}\right)+C_{E}^{\mathcal{S}} \underline{f_{q}^{\beta}} \\
\text { for } \mathrm{f}_{\mathrm{q}}(\mathrm{p}) \ll \mathrm{l} \\
\mathcal{V}_{\mathrm{CE}}\left[f_{q}\right] \simeq-C_{E}^{\mathcal{A}} \\
\text { dilute in momentum space }
\end{gathered}
$$

color-antisym. channels dominate
\rightarrow the quark feels attractive correlations

color-sym. channels also enter
\rightarrow the quark feels repulsive correlations also

EoS with interactions

adjust $C_{E}^{A} \quad$ (fit $M_{B}=939 \mathrm{MeV}$)

high density stiffening

peak in c_{s}

Summary

Back up

Stiff quark matter EoS ?: intuitive questions

quarks in a baryon are energetic
baryonic matter

but they do not directly contribute to the pressure

$$
\varepsilon \gg P
$$

QI) deconfinement \rightarrow stiff EoS ?
can be both soft and stiff

Q2) normalization ?

Switching bases from baryons to quarks \rightarrow blurs the picture

Comparisons with other scenarios

with ${ }^{\text {st }}$ order

Annala+ ('20)
$\xrightarrow{\sim}$
Ours; Masuda+ ('I2), McLerran+('I9),...

Interactions for stiff EoS : a guide

cf) [TK-Powell-Song-Baym, 'I4]

$$
\begin{aligned}
& \text { kin. energy interactions } \quad \mu=\frac{\partial \varepsilon}{\partial n} \\
& \varepsilon(n)=\underline{a} n^{4 / 3}+\underline{b} n^{\alpha} \quad \mu=\frac{4}{3} \underline{a} n^{1 / 3}+\alpha b \underline{n}^{\alpha-1} \\
& \text { conformal interactions } \\
& P=\mu n-\varepsilon \\
& P=\frac{\varepsilon}{3}+\underline{b}\left(\alpha-\frac{4}{3}\right) n^{\alpha}
\end{aligned}
$$

both the sign \& density dep. are important
For $\alpha>4 / 3: \quad \mathrm{b}>0$ (repulsion) \rightarrow stiff EoS (e.g. bulk repulsion, $\sim+n_{B}^{2} / \Lambda^{2}$)
For $\alpha<4 / 3: \quad \mathrm{b}<0$ (attraction) \rightarrow stiff EoS (e.g. surface pairings, $\sim-\Lambda^{2} n_{B}{ }^{2 / 3}$)

Quantum numbers?

quark quantum numbers; $N_{c}, N_{f}, 2$-spins (for a given spatial w.f.)
how many baryon species are needed to saturate quark states?

$$
\rightarrow \text { we need only } \mathbf{2} \mathbf{N}_{\mathbf{f}}=6 \text { species for } N_{f}=3
$$

(full members of singlet, octet, decuplet are NOT necessary)
convenient color-flavor-spin bases
[neglect $\mathrm{N}-\Delta$ splitting etc. for simplicity]

$$
\begin{aligned}
\Delta_{s_{z}= \pm 3 / 2}^{++}=\left[u_{R} \uparrow u_{G} \uparrow u_{B} \uparrow\right], & {\left[u_{R} \downarrow u_{G} \downarrow u_{B} \downarrow\right], } \\
\Delta_{s_{z}= \pm 3 / 2}^{-}=\left[d_{R} \uparrow d_{G} \uparrow d_{B} \uparrow\right], & {\left[d_{R} \downarrow d_{G} \downarrow d_{B} \downarrow\right], } \\
\Omega_{s_{z}= \pm 3 / 2}^{-}=\left[s_{R} \uparrow s_{G} \uparrow s_{B} \uparrow\right], & {\left[s_{R} \downarrow s_{G} \downarrow s_{B} \downarrow\right], }
\end{aligned}
$$

$$
\Delta_{s_{z}=+3 / 2}^{++}
$$

u
$\Omega_{s_{z}=-3 / 2}^{-}$

S

Inversion problem: from f_{q} to B

$$
f_{q}\left(p ; n_{B}\right)=\int_{\boldsymbol{P}_{B}} \mathcal{B}\left(P_{B} ; n_{B}\right) Q_{\text {in }}\left(\boldsymbol{p}, \boldsymbol{P}_{B}\right)
$$

How does baryon occ. probability look after the saturation ?

Inversion problem: motivations to study B

" perhaps convenient to use the baryonic bases for low E physics

$$
\left.P\left(\mu_{B}\right)\right|_{B-e q} \longmapsto P\left(\mu_{B}, \mu_{Q}, T, \ldots\right)
$$

extensions of the quark-hadron continuity

- relations to the McLerran-Reddy (MR) model

important parameter

$$
\begin{gathered}
\Delta=\frac{\Lambda^{3}}{k_{\mathrm{FB}}^{2}}+\kappa \frac{\Lambda}{N_{c}^{2}} \\
\text { why this form? }
\end{gathered}
$$

- phenomenological
[McLerran-Reddy, PRL 'I 9]
- derivation in excluded vol. model
[Jeong-McLerran-Sen, 'I9]

A trial: shell form

$$
\mathcal{B}^{\mathrm{sh}}\left(P_{B} ; P_{\mathrm{sh}}\right)=\underline{h} \theta\left(P_{\mathrm{sh}}-P_{B}\right) \theta\left(P_{B}-P_{\mathrm{sh}}-\underline{\Delta}\right)
$$

$$
f_{q}^{\text {sh }}(p) \simeq h \Delta \frac{N_{c}^{3}}{\sqrt{\pi}} \frac{\tilde{P}_{\text {sh }}}{\tilde{p}} \mathrm{e}^{-\tilde{p}^{2}-\tilde{P}_{\mathrm{sh}}^{2}}\left(\mathrm{e}^{2 \tilde{p} \tilde{P}_{\mathrm{sh}}}-\mathrm{e}^{-2 \tilde{p} \tilde{P}_{\mathrm{sh}}}\right)
$$

$$
P_{s h} \sim N_{c} \wedge
$$

$$
f_{q}^{\mathrm{sh}}(p) \sim h \Delta N_{\mathrm{c}}^{2} \mathrm{e}^{-\left(\tilde{p}-\tilde{P}_{\mathrm{sh}}\right)^{2}}
$$

Constraints from $\mathbf{f}_{\mathbf{q}} \quad\left(\right.$ for $\left.P_{s h} \sim N_{c} \wedge\right)$

$$
f_{q}^{\mathrm{sh}}(p) \sim h \Delta N_{\mathrm{c}}^{2} \mathrm{e}^{-\left(\tilde{p}-\tilde{P}_{\mathrm{sh}}\right)^{2}}
$$

$$
\text { constraint: } \quad f_{q}^{s h}<1 \quad \mathrm{~h} \Delta<\Lambda / N_{c}^{2}
$$

a possible scaling form: $\quad[h \Delta]\left(P_{\mathrm{sh}}\right) \sim c_{0} \Lambda\left(\frac{\Lambda^{2}}{P_{\mathrm{sh}}^{2}}+\frac{c_{1}}{N_{\mathrm{c}}} \frac{\Lambda}{P_{\mathrm{sh}}}+\frac{c_{2}}{\underline{N_{\mathrm{c}}^{2}}}\right)$

MR-model (thin shell model)

$$
h=\mathrm{I} \quad \& \quad \Delta=\frac{\Lambda^{3}}{\underline{k_{\mathrm{FB}}^{2}}}+\kappa \frac{\Lambda}{\underline{N_{c}^{2}}} \quad\left(\mathrm{c}_{\mathrm{l}}=0\right)
$$

MR-model: EoS
$P_{s h} \sim N_{c} \wedge \quad$ baryon relativistic
but $\begin{array}{rlc}\begin{aligned} &(\text { shell }) \\ & n_{B} \simeq \frac{h}{\pi^{2}}\left(P_{\mathrm{sh}}^{3}-\left(P_{\mathrm{sh}}-\Delta\right)^{3}\right) \sim h \Delta P_{\mathrm{sh}}^{2} \\ & \simeq c_{0} \Lambda^{3}+c_{1} \Lambda^{2} \frac{P_{\mathrm{sh}}}{N_{\mathrm{c}}}+c_{2} \Lambda\left(\frac{P_{\mathrm{sh}}}{N_{\mathrm{c}}}\right)^{2}\end{aligned} & n_{\mathrm{B}} \sim \Lambda^{3}(!) \ll\left(N_{c} \Lambda\right)^{3}\end{array}$
(kin.) energy density:

$$
\begin{aligned}
\varepsilon-m_{B} n_{B} & \sim h \Delta \times\left[E\left(P_{s h}\right)-m_{B}\right] \times 4 \pi P_{s h}^{2} \\
& \sim \Lambda / N_{c}^{2} \times\left(N_{c} \Lambda\right)^{2} / m_{B} \times\left(N_{c} \Lambda\right)^{2} \sim N_{c} \Lambda^{4}
\end{aligned}
$$

relativistic pressure $\sim N_{c} \Lambda^{4}$ within $n_{B} \sim \Lambda^{3} \rightarrow$ stiff EoS

Inversion problem: from f_{q} to B

$$
\begin{aligned}
& \begin{aligned}
\text { vector } \\
f_{q}\left(p ; n_{B}\right)
\end{aligned}= \int_{\boldsymbol{P}_{B}} \frac{\mathcal{B}^{\text {vector }}\left(P_{B} ; n_{B}\right)}{\text { formally: }} \quad Q_{\mathrm{in}}\left(\boldsymbol{p}, \boldsymbol{P}_{B}\right) \\
& \vec{f}_{q}=Q_{\mathrm{in}} \overrightarrow{\mathcal{B}} \quad \text { for a given } \mathrm{n}_{\mathrm{B}} \\
& \text { forix }
\end{aligned}
$$

a practical problem : e.g., an optimization for $\{\alpha\}$ parameterized form $B[\alpha]$:

$$
\mathcal{H}(\vec{\alpha})=\left(\vec{f}_{q}-Q_{\mathrm{in}} \overrightarrow{\mathcal{B}}_{\alpha}\right)^{T}\left(\vec{f}_{q}-Q_{\mathrm{in}} \overrightarrow{\mathcal{B}}_{\alpha}\right)+\mathcal{I}_{\text {cost }}\left(\mathcal{B}_{\alpha}\right) \quad \begin{aligned}
& \text { some penalty } \\
& \text { when violating } \\
& \text { the constraint }
\end{aligned}
$$

what is the reasonable parameterization for B ?

More on "h Δ " : another look
purely quark bases
purely baryonic bases

Introduction (7 slides): 6.5 min

I, title
2, 3-winodw
3, M-R relations
4, NS; NICER
5, Soft-to-Stiff
6, Goals
[0.5 min]
[1.5 min]
[Imin]
[Imin]
[1.5 min] [1.5 min]
main (I0 slides): 14 min
[6min]
8, strategy
9, quarks in a baryon
[1 min]

10, fq = B Qin
[2 min]
[1.5 min]
II, ideal baryon gas
[1.5 min]

[7min]

12, saturation of quarks [I min]
13, quark matter formation [I min]
14, jumps
15, $P=d(e / n) / d n .$.
16, more realistic
I7, smear

18, int
19, EoS with int

20, summary

