RIKEN workshop on NS, Aug 12, 2021

Stiffening of matter in **quark-hadron continuity**

--- peak in sound velocity ---

Toru Kojo

(Central China Normal University)

Ref) TK, <u>2106.06687</u> [nucl-th]

A picture being developed

• many-quark exchange

• structural change,...

- few meson exchange
- nucleons only

[Masuda-Hatsuda-Takatsuka '12; TK-Powell-Song-Baym '14]

Baryons overlap

• Quark Fermi sea

Goals in this work

```
Direct descriptions of the "c<sub>s</sub>-peak"
```


[cf) McLerran-Reddy (MR), PRL '19,...]

the statements include:

I) robust in a quark-hadron continuity model

2) appears before baryon cores overlap

3) nuclear repulsive forces are NOT major driving forces [nuclear int. will be ignored at LO]

Problem

Switching from baryonic to quark bases → source of confusions in hybrid modeling (e.g. normalization of energy)

Strategy

Follow quark states from nuclear to quark matter (within a single model)

8/20 Quarks in a baryon N_c (=3): number of colors probability density: $Q_{ m in}(m{p},m{P}_B)=\mathcal{N}{ m e}^{-rac{1}{\Lambda^2}\left(m{p}-rac{m{P}_B}{N_{ m c}} ight)^2}$ p_2 P_{R} mean: $\langle \boldsymbol{P}_B \rangle = N_c \int_{\boldsymbol{p}} \boldsymbol{p} Q_{\rm in}(\boldsymbol{p}, \boldsymbol{P}_B)$ ∧ ~ 200 MeV localized variance: $\left\langle \left(\boldsymbol{p} - \frac{\boldsymbol{P}_B}{N_*} \right)^2 \right\rangle \sim \Lambda^2$ energetic ! Ρ $P_{\rm B}/N_{\rm c}$ $\langle E_q(\boldsymbol{p}) \rangle_{\underline{\boldsymbol{P}}_B} = \mathcal{N} \int_{\boldsymbol{p}} E_q(\boldsymbol{p}) e^{-\frac{1}{\Lambda^2} \left(\boldsymbol{p} - \frac{\boldsymbol{P}_B}{N_c} \right)^2} \simeq \langle E_q(\boldsymbol{p}) \rangle_{\boldsymbol{P}_B = 0} + \frac{1}{6} \left\langle \frac{\partial^2 E_q}{\partial p_i \partial p_i} \right\rangle_{\boldsymbol{P}_B = 0} \left(\frac{\boldsymbol{P}_B}{N_c} \right)^2 + \cdots$ $\times N_{c}$ average energy (quark)

baryon mass

baryon kin. energy

Occupation probability of quark states

$f_q(p; n_B) = \frac{(n_B)}{n_B^c} e^{-p^2/\Lambda^2} + O(1/N_c^2)$

for ideal baryon gas:

 the shape does not change LO: • the height grows linearly in n_B

Quarks in ideal baryon gas $f_q(p;n_B) = \int_{P_B} \mathcal{B}(P_B;n_B) Q_{in}(p,P_B)$

energy density

$$\varepsilon(n_B) = N_c \int_{\mathbf{p}} E_q(p) \left(f_q^{\text{LO}}(p; n_B) + O(1/N_c^2) \right) = \underbrace{n_B M_B}_{\text{kin. energy}} + O(1/N_c)$$

pressure:
$$\mathcal{P} = n_B^2 \partial (\varepsilon/n_B) / \partial n_B \sim 0 + O(I/Nc)$$

~ const. very soft

10/20

Saturation of quark states

$$\Lambda \sim 0.15-0.35 \text{ GeV} \rightarrow n_B^c \sim 0.2-3.5 n_0^\circ$$

should happen **before** baryon cores overlap
cf) Soft Deconfinement [Fukushima-TK-Weise, '20]

Quark matter formation: $f_q(p;n_B)$

 \mathcal{E} , n_{B} are **continuous** before and after the saturation. any nontrivial consequences ? **jumps in** $\mu_{B_{r}} P$ (Nc = 3, M_q = 0.3 GeV)

a model of f_q looks innocent, but its consequence is unphysical: \mathcal{E}, n_B are continuous, jumps in $\mu_B \& P$

 $(\Delta \mu_B \sim N_c \Lambda)$

opposite to usual 1st order P.T. (!)

Quark matter formation: EoS

More realistic picture [$P_B \& P_Q$ from a **single** model; f_q continuous]

I 6/20

Smooth version

$$f_q^{\text{sat}}(p; p_{\text{sat}}) = \frac{\tanh(p_{\text{sat}}/p_w)}{\tanh(p_{\text{sat}}/p_w)} \times \left[\theta(p_{\text{sat}}-p) + \theta(p-p_{\text{sat}}) e^{-(\tilde{p}-\tilde{p}_{\text{sat}})^2}\right]$$

- *location* primarily determined by Λ (or baryon size)
- width primarily determined by p_w (or interactions)
- interactions: NOT driving forces, just temper the peak

17/20 quark energy; parameterization of MF $\mathcal{V}_{\rm CE}[f_q] = -C_E^{\mathcal{A}} \times \left(1 - f_q^{\beta}\right) + C_E^{\mathcal{S}} f_q^{\beta}$ for $f_{a}(p) \sim I$ for $f_{q}(p) \ll I$ Τq $\mathcal{V}_{\rm CE}[f_q] \simeq C_E^{\mathcal{S}}$ $\mathcal{V}_{\rm CE}[f_q] \simeq -C_E^{\mathcal{A}}$ Þ repulsive attractive for saturated levels dilute in momentum space color-sym. channels also enter \rightarrow the quark feels color-antisym. channels dominate repulsive correlations also \rightarrow the quark feels *attractive* correlations

 f_q

adjust C_E^A (fit M_B = 939 MeV)

EoS with interactions

high density stiffening

peak in c_s

18/20

Summary

Switching bases from *baryons* to *quarks* \rightarrow **blurs** the picture

Comparisons with other scenarios

29/37

Interactions for stiff EoS: a guide

cf) [TK-Powell-Song-Baym, '14]

30/33

both the sign & density dep. are important

For $\alpha > 4/3$: b > 0 (repulsion) \rightarrow stiff EoS (e.g. bulk repulsion, $\sim + n_B^2/\Lambda^2$) For $\alpha < 4/3$: b < 0 (attraction) \rightarrow stiff EoS (e.g. surface pairings, $\sim - \Lambda^2 n_B^{2/3}$)

Quantum numbers ?

quark quantum numbers; N_c , N_f , 2-spins (for a given spatial w.f.)

how many baryon species are needed to saturate quark states?

$$\rightarrow$$
 we need only **2N_f = 6** species for N_f = 3

(full members of singlet, octet, decuplet are **NOT** necessary)

convenient **color-flavor-spin** bases

[neglect N-
$$\varDelta$$
 splitting etc. for simplicity]

$$\Delta_{s_z=\pm 3/2}^{++} = [u_R \uparrow u_G \uparrow u_B \uparrow], \quad [u_R \downarrow u_G \downarrow u_B \downarrow],$$

$$\Delta_{s_z=\pm 3/2}^{-} = [d_R \uparrow d_G \uparrow d_B \uparrow], \quad [d_R \downarrow d_G \downarrow d_B \downarrow],$$

$$\Omega_{s_z=\pm 3/2}^{-} = [s_R \uparrow s_G \uparrow s_B \uparrow], \quad [s_R \downarrow s_G \downarrow s_B \downarrow],$$

Inversion problem: from f_a to B

$$f_q(p; n_B) = \int_{\boldsymbol{P}_B} \mathcal{B}(P_B; n_B) Q_{\text{in}}(\boldsymbol{p}, \boldsymbol{P}_B)$$

How does baryon occ. probability look after the saturation ?

Inversion problem: motivations to study B

perhaps convenient to use the baryonic bases for low E physics

$$P(\mu_B)|_{B-eq} \longrightarrow P(\mu_B, \mu_Q, T, ...)$$

extensions of the quark-hadron continuity

relations to the McLerran-Reddy (MR) model

important parameter

$$\Delta = \frac{\Lambda^3}{k_{\rm FB}^2} + \kappa \frac{\Lambda}{N_c^2}$$

why this form?

- phenomenological [McLerran-Reddy, PRL '19]
- derivation in excluded vol. model [Jeong-McLerran-Sen, '19]

A trial: shell form

$$\mathcal{B}^{\rm sh}(P_B; P_{\rm sh}) = \underline{h}\theta(P_{\rm sh} - P_B)\theta(P_B - P_{\rm sh} - \underline{\Delta})$$

Constraints from f_{a} (for $P_{sh} \sim N_c \Lambda$) $f_q^{\rm sh}(p) \sim h\Delta N_{\rm c}^2 \,\mathrm{e}^{-(\tilde{p}-\tilde{P}_{\rm sh})^2}$ constraint: $f_a^{sh} < I \implies h \varDelta < \Lambda/N_c^2$ a possible scaling form: $[h\Delta](P_{\rm sh}) \sim c_0 \Lambda \left(\frac{\Lambda^2}{P_{\rm sh}^2} + \frac{c_1}{N_c}\frac{\Lambda}{P_{\rm sh}} + \frac{c_2}{N_c^2}\right)$ $A \sim \Lambda/N_c^2$ MR-model (thin shell model) h = 1 & $\Delta = \frac{\Lambda^3}{k_{\text{FB}}^2} + \kappa \frac{\Lambda}{N_c^2}$ (c₁ = 0) $k_{FR} \sim N_c \Lambda_{QCD}$

27/33

MR-model: EoS

$$P_{\rm sh} \sim N_c \Lambda \quad \text{baryon relativistic}$$
but
$$n_B \simeq \frac{h}{\pi^2} \left(P_{\rm sh}^3 - (P_{\rm sh} - \Delta)^3 \right) \sim \underline{h} \Delta P_{\rm sh}^2 \qquad n_B^{(\text{bulk})} \sim \Lambda^3$$

$$\simeq c_0 \Lambda^3 + c_1 \Lambda^2 \frac{P_{\rm sh}}{N_c} + c_2 \Lambda \left(\frac{P_{\rm sh}}{N_c} \right)^2 \qquad n_B \sim \Lambda^3 \text{ (!) } << (N_c \Lambda)^3$$

(kin.) energy density:

 $\varepsilon - m_B n_B \sim h \Delta \times [E(P_{sh}) - m_B] \times 4 \pi P_{sh}^2$

consistent with quark's

 $\sim \Lambda/N_c^2 \propto (N_c \Lambda)^2/m_B \propto (N_c \Lambda)^2 \sim N_c \Lambda^4$

relativistic pressure ~ $N_c \Lambda^4$ within $n_B \sim \Lambda^3 \rightarrow \text{stiff EoS}$

Inversion problem: from f_q to B

$$f_q(p; n_B) = \int_{P_B} \underbrace{\mathcal{B}(P_B; n_B)}_{P_B} Q_{in}(p, P_B)$$

formally: $\vec{f_q} = Q_{in} \vec{\mathcal{B}}$ for a given n_B
[constraint : $0 < B < 1$]

a practical problem : e.g., an optimization for $\{\alpha\}$ parameterized form $B[\alpha]$:

some penalty when violating the constraint.

$$\mathcal{H}(\vec{\alpha}) = \left(\vec{f}_q - Q_{\rm in}\vec{\mathcal{B}}_{\alpha}\right)^T \left(\vec{f}_q - Q_{\rm in}\vec{\mathcal{B}}_{\alpha}\right) + \mathcal{I}_{\rm cost}(\mathcal{B}_{\alpha})$$

what is the reasonable parameterization for B?

Introduction (7 slides): 6.5 min

title
 3-winodw
 M-R relations
 NS; NICER
 Soft-to-Stiff
 Goals

[0.5 min] [1.5 min] [1min] [1min] [1.5min] [1.5 min]

main (10 slides): 14 min

[6min]			
8,	strategy	[1 min]	
9,	quarks in a baryon	[2 min]	
10,	fq = B Qin	[1.5 min]	
11,	ideal baryon gas	[1.5 min]	

[7min]

2,	saturation of quarks	[I min]
3,	quark matter formation	[I min]
4,	jumps	[I min]
5,	$P = d(e/n)/dn \dots$	[1.5min]
6,	more realistic	[1 min]
7,	smear	[1.5 min]

18, int19, EoS with int

20, summary