Toward QCD-based construction of the equation of state

Reference:

<u>Y. Fujimoto</u>, K. Fukushima, "Equation of state of cold and dense QCD matter in resummed perturbation theory," arXiv:2011.10891.

12 August 2021, 4th neutron star workshop

- 1. Refinement of the perturbative QCD calculation
- 2. Observational constraint and quark cores of neutron stars

Content of the talk

1. Refinement of the perturbative QCD calculation

2. Observational constraint and quark cores of neutron stars

Equation of state (EoS)

EoS: pressure function $p(n_{\rm B})$, $p(\varepsilon)$, or $p(\mu_{\rm B})$

($n_{\rm B}$: baryon density, ε : energy density, $\mu_{\rm B}$: chemical potential)

A QCD point of view on the NS EoS

Ab initio and model-independent constraints from QCD point of view:

ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); Drischler,Furnstahl,Melendez,Phillips (2020) pQCD: Freedman,McLerran (1978); Baluni (1979); Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-) ₅

A QCD point of view on the NS EoS

Ab initio and model-independent constraints from QCD point of view:

ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); Drischler,Furnstahl,Melendez,Phillips (2020) pQCD: Freedman,McLerran (1978); Baluni (1979); Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-) ₆

Problem of the pQCD calculation

ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); Drischler,Furnstahl,Melendez,Phillips (2020) pQCD: Freedman,McLerran (1978); Baluni (1979); Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-) ₇

Lessons from high temperature QCD

Nice thing about hot QCD: there is Lattice QCD calculation

NO 1st order phase transition

Figure taken from Fraga, Kurkela, Vuorinen (2013)

Resummation saves the pQCD

What we calculate here

ſ

Quark contribution to the pressure *p*:

 $p(\mu) = \operatorname{Tr} \log S^{-1}$ HDL resummed full propagator

$$= \sum_{\{K\}} \ln \det \left[\not{k} - M_f - \sum (i \tilde{\omega}_n + \mu_f, k) \right]$$

Self-energy of quark matter
 \rightarrow leads to quasi-particles

& screening

Self-energy Σ in HDL approximation:

$$\Sigma \equiv \frac{m_q^2}{k} \gamma^0 Q_0 \left(\frac{k_0}{k}\right) + \frac{m_q^2}{k} \gamma \cdot \hat{k} \left[1 - \frac{k_0}{k} Q_0 \left(\frac{k_0}{k}\right)\right]$$

(Legendre function:
$$Q_0(x) = \frac{1}{2} \log \frac{x+1}{x-1})$$

Integration contour deformation:

tedious calculation...

Result from the HDL resummed QCD

Heuristic argument

Fujimoto, Fukushima: 2011.10891 (2020)

Pressure does not differ at constant μ

Density is screened in HDL resummation at constant μ

→ in HDL resummation, the same value of p realizes at lower $n_{\rm B}$ especially for $\bar{\Lambda} = \mu$

Result from the HDL resummed QCD

- 1. Refinement of the perturbative QCD calculation
- 2. Observational constraint and quark cores of neutron stars

Smooth matching to the nuclear EoS

<u>Fujimoto, Fukushima: 2011</u>.10891 (2020)

 $n_{\rm B} > n_0$: extrapolation w/ the $2M_{\odot}$ pulsar constraint Hebeler,Lattimer,Pethick,Schwenk (2013) APR conventional nuclear EoS Akmal,Pandharipande,Ravenhall (1998) 15

Smooth matching to the nuclear EoS

Fujimoto, Fukushima: 2011.10891 (2020)

QCD + observational constraint

Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nat. Phys. (2020)

~ 570,000 interpolated EoSs are plotted:

QCD + observational constraint

Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nat. Phys. (2020)

~ 570,000 interpolated EoSs are plotted:

QCD + observational constraint

Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nat. Phys. (2020)

- EoS is characterized by several parameters:

Speed of sound:
$$c_s^2 = \frac{dP(\varepsilon)}{d\varepsilon}$$

Polytropic index: $\gamma = \frac{d\log P}{d\log \varepsilon}$ (cf. polytrope: $P = K\varepsilon^{\gamma}$)

Ratio to free Fermi-Dirac pressure: $P_{\rm FD}(\mu_{\rm B}) = \frac{\mu_{\rm B}^4}{12\pi^2}$... effective measure for number of d.o.f

3d-plot of many interpolated EoSs

Annala, Gorda, Kurkela, Nättilä, Vuorinen, Nat. Phys. (2020)

Quark core is not "exotic" anymore

Fujimoto, Fukushima: 2011.10891 (2020)

Summary

Developed **QCD-based & model-independent calculations** of the dense matter EoS:

1. Refined pQCD calculation of the EoS:

- Performed the novel calculation in perturbative QCD
- Result implies that the applicability is extended compared with the preceding calculation; pQCD is not useless

2. Observational constraints and quark core:

- Rapid slope change (likely a crossover) implied by the calculation
- This may be identified with the emergence of quark core; it is **not exotic anymore**