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Equation of state (EoS)
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EoS: pressure function , , or p(nB) p(ε) p(μB)
( : baryon density,  : energy density,  : chemical potential)nB ε μB

 ρ

Özel,Freire (2016)

There are many different calculations…



A QCD point of view on the NS EoS
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ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); 
Drischler,Furnstahl,Melendez,Phillips (2020)

(n0 = 0.16 fm−3)

Chiral 
EFT

Perturbative 
QCD

pQCD: Freedman,McLerran (1978); Baluni (1979); 
Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-)

Ab initio and model-independent constraints  
from QCD point of view:
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ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); 
Drischler,Furnstahl,Melendez,Phillips (2020)

(n0 = 0.16 fm−3)

Chiral 
EFT

pQCD: Freedman,McLerran (1978); Baluni (1979); 
Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-)

Constrained at nB = n0

Extrapolation valid  
at ?nB ≳ 2 n0

Ab initio and model-independent constraints  
from QCD point of view:

Perturbative 
QCD



Problem of the pQCD calculation
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ChEFT: Tews,Carlson,Gandolfi,Reddy (2018); 
Drischler,Furnstahl,Melendez,Phillips (2020)

(n0 = 0.16 fm−3)

Chiral 
EFT

pQCD: Freedman,McLerran (1978); Baluni (1979); 
Kurkela,Romatschke,Vuorinen,Gorda,Sappi (2009-)

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ]

uncertainty: originate from 
scale variation 
Λ̄ = μ, 2μ, 4μ

Perturbative 
QCD

Λ̄ = μΛ̄ = 2μ

Λ̄ = 4μ

: undetermined const.Λ̄
Convergence problem



Lessons from high temperature QCD
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Fig. 1.— Predictions for pressure of hot three-flavor QGP ob-
tained from lattice QCD, the MIT bag model and perturbative
QCD. The error bars reflect various uncertainties in the results.
The quantities are normalized by the pressure of a system of free
quarks and gluons.

Within perturbative thermal field theory, the EoS of a
given system is obtained by expanding the path integral
representation of the partition function in terms of zero-
point Feynman diagrams. The expansion is, however,
somewhat complicated by the fact that diagrams with
any number of loops can contribute at the same order in
αs. This is seen explicitly in the fact that at order α2

s the
pressure of zero-temperature QCD obtains contributions
from an infinite set of so-called plasmon or ring diagrams
(Kraemmer & Rebhan 2004).
Having determined the weak coupling expansion to a

given order in αs, we observe that the result has be-
come a function of an unphysical auxiliary parameter,
the renormalization scale Λ̄. As long as the perturba-
tive expansion converges, this dependence is, however,
guaranteed to decrease order by order, and thus the sen-
sitivity of our result on the parameter can be interpreted
as reflecting the systematic error introduced by the trun-
cation of the series. This error is commonly estimated by
choosing a physically reasonable fiducial scale and vary-
ing the renormalization scale around it by a factor of
two; below, we too follow this procedure, choosing as the
central scale the commonly used value Λ̄ = (2/3)µB.
For the pressure of QCD at nonzero density, the

weak coupling expansion has so far been deter-
mined to O(α3

s ln αs) at temperatures T !
√
αsµ

(Vuorinen 2003; Ipp et al. 2006), to O(α2
s) at T = 0

(Freedman & McLerran 1976; Baluni 1977; Blaizot et al.
2001; Fraga et al. 2001; Kurkela et al. 2010a), and to
O(α2

s ln αs) between these two limits (Toimela 1984)
(see also Andersen & Strickland (2002); Gerhold et al.
(2004)). The calculation relevant for compact star
physics is clearly the O(α2

s) zero-temperature work of
Kurkela et al. (2010a), which most importantly also
takes into account the nonzero value of the strange quark
mass. It is exactly this EoS, applied to the special case
of electrically neutral and β-stable quark matter, that we
will analyze in the present letter.4 It is a function of the
baryon chemical potential µB and parametrized by the

4 There is some freedom involved with the choice of the thermo-
dynamical potential that one chooses to truncate at a given order
in αs, while other functions are derived from it demanding ther-
modynamic consistency. Unlike in Kurkela et al. (2010a), we have
for simplicity chosen to truncate here the pressure as a function of
µB .
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Fig. 2.— Same as in Fig. 1, but for the pressure of zero-
temperature quark matter in β equilibrium as a function of the
baryon chemical potential.

strong coupling constant and strange quark mass, which
are taken at arbitrary reference scales, αs(1.5GeV) =
0.326 and ms(2GeV) = 0.938GeV (Bazavov et al. 2012;
Aoki et al. 2013), and then let evolve as functions of the
MS scale Λ̄.
We find that the EoS and its first and second deriva-

tives are to a very good accuracy described by the com-
pact fitting function

PQCD(µB, X) = PSB(µB)

(

c1 −
a(X)

(µB/GeV)− b(X)

)

,

(1)

a(X) = d1X
−ν1 , b(X) = d2X

−ν2 , (2)

where we have denoted the pressure of three massless
noninteracting quark flavors (at Nc = 3) by

PSB(µB) =
3

4π2
(µB/3)

4. (3)

The dependence of the result on the renormalization scale
is contained in the functions a(X) and b(X), which de-
pend on a dimensionless parameter proportional to the
scale parameter, X ≡ 3Λ̄/µB, that is allowed to vary
from 1 to 4.
The values of the constants {c1, d1, d2, ν1, ν2} are fixed

by minimizing the value of the following merit function

χ2 = [∆P (µB , X)]2 + [∆N(µB, X)]2 + [∆c2s(µB, X)]2,
(4)

where ∆P , ∆N , and ∆c2s are the differences between
the values of the pressure, quark number density and
speed of sound squared obtained from the fit and
from the corresponding full perturbative expressions of
Kurkela et al. (2010a), normalized to the corresponding
Stefan-Boltzmann values. For our best fit values

c1 = 0.9008 d1 = 0.5034 d2 = 1.452 (5)

ν1= 0.3553 ν2= 0.9101, (6)

we obtain a good fit (
√

χ2 " 0.03) in the region de-
fined by the conditions µB < 2GeV, P (µB) > 0, and
X ∈ [1, 4]. We have checked that all relevant observ-
ables depending on the pressure and its first and second
derivatives (such as the energy density as a function of
pressure) are faithfully described by the fit.

Figure taken from Fraga,Kurkela,Vuorinen (2013)

Nice thing about hot QCD: there is Lattice QCD calculation

1. resummation cures 
the convergence problem; 
EoS with mild uncertainty

2. Crossover transition from 
hadron to quark. 

NO 1st order phase transition



Resummation saves the pQCD
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conventional 
pQCD

Our result  
with resummation

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ] uncertainty: originate from 

scale variation 
Λ̄ = μ, 2μ, 4μ: undetermined const.Λ̄

Fujimoto, Fukushima: 2011.10891 (2020)



What we calculate here
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HDL resummed full propagator

Quark contribution to the pressure :p
p(μ) = Tr log S−1

Σ ≡
m2

q

k
γ0Q0 ( k0

k ) +
m2

q

k
γ ⋅ k̂ [1 − k0

k
Q0 ( k0

k )]
Self-energy  in HDL approximation:Σ

(Legendre function:  

)Q0(x) = 1
2 log x + 1

x − 1
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I. DETAILS OF INTEGRATION: THE QUARK CONTRIBUTION TO THE PRESSURE

Here, we will supplement the details of integration that appears in the derivation of Eq. (5) in the main text. The
quark part of the pressure appears from the flavor-f quark loop:

Pq,f (T, µf ) = tr lnG�1

f (1)

=
XZ

{K}
ln det [/k �Mf � ⌃(i!̃n + µf , k)]

= 2
XZ

{K}
ln
⇥
A2

S(i!̃n + µf , k) +M2

f �A2

0
(i!̃n + µf , k)

⇤
, (2)

where we write the sum-integral as
PR

{K} = T
P

!̃n

R
k in d = 3�2✏ spatial dimensions for the momentum integration.

The functions A0 and AS are defined in the main text. We note that Pq,f in Eq. (1) can be regarded as a leading
contribution in the 2PI or the Cornwall-Jackiw-Tomboulis (CJT) formalism [1, 2]. This explains why Eq. (1) misses
an additional term, tr⌃Gf , that may be responsible for the deviation of O(↵s), which will be studied below.

We recast the Matsubara sum into the contour integral along C as depicted in the left panel of Fig. 1. We can
deform the contour C into Cqp [ CLd, see the right panel of Fig. 1. We identify the terms from Cqp and CLd with the
quasiparticle contribution and the Landau damping contribution, respectively, according to Refs. [3, 4]:

Pqp/Ld,f (T, µf ) =

Z

k

I

Cqp/Ld

d!

2⇡i
ln
⇥
A2

S(!, k) +M2

f �A2

0
(!, k)

⇤
tanh

✓
�(! � µf )

2

◆
. (3)

C
…

�f

Re �

Im �

Re �

Im �

k�k

+�f���f�

Cqp

CLd

+�f+��f+

FIG. 1. (Left) Original contour C corresponding to the Matsubara sum. (Right) Deformed contours, Cqp and CLd.

Self-energy of quark matter 
→ leads to quasi-particles  
     & screening
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Integration contour deformation:

tedious calculation…



Result from the HDL resummed QCD 
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HDL resummed 
(our result)

pQCD

 widens  
the error band
Λ̄ = μ

 works  
reasonably

Λ̄ > 2μ

Fujimoto, Fukushima: 2011.10891 (2020)

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ] uncertainty: originate from 

scale variation 
Λ̄ = μ, 2μ, 4μ: undetermined const.Λ̄



Heuristic argument
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Density is screened in HDL 
resummation at constant μ

p(μ) nB(μ)

Pressure does not differ 
at constant μ

→ in HDL resummation, 
     the same value of  realizes at lower  
     especially for 

p nB
Λ̄ = μ

Fujimoto, Fukushima: 2011.10891 (2020)



Result from the HDL resummed QCD 
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HDL resummed 
(our result)

pQCD

αs(Λ̄) = 4π
β0 log(Λ̄2/Λ2

MS) [1 − 2β1
β2

0

log2(Λ̄2/Λ2
MS)

log(Λ̄2/Λ2
MS) ] uncertainty: originate from scale 

variation Λ̄ = μ, 2μ, 4μ

pQCD breakdown 
 is lowerednB

Fujimoto, Fukushima: 2011.10891 (2020)
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Smooth matching to the nuclear EoS
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EoS extracted from X-ray NS data using neural network 
: ChEFT EoS 

: extrapolation w/ the  pulsar constraint 
conventional nuclear EoS

nB ≤ n0
nB > n0 2M⊙

Fujimoto,Fukushima,Murase (2017-)

Hebeler,Lattimer,Pethick,Schwenk (2013)

Akmal,Pandharipande,Ravenhall (1998)

NN 

EFT+Astro 

APR

χ

Fujimoto, Fukushima: 2011.10891 (2020)
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EoS extracted from X-ray NS data using neural network 
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QCD + observational constraint
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~ 570,000 interpolated EoSs are plotted:
Annala,Gorda,Kurkela,Nättilä,Vuorinen, Nat.Phys.(2020)
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QCD + observational constraint

- EoS is characterized by several parameters: 

- Speed of sound:  

- Polytropic index:   (cf. polytrope: )  

- Ratio to free Fermi-Dirac pressure:  

… effective measure for number of d.o.f

c2
s = dP(ε)

dε

γ = d log P
d log ε

P = Kεγ

PFD(μB) = μ4
B

12π2

19

Annala,Gorda,Kurkela,Nättilä,Vuorinen, Nat.Phys.(2020)



3d-plot of many interpolated EoSs
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LETTERSNATURE PHYSICS

ringdown. Importantly, both of these have the potential to lead to 
observable effects in GW signals from NS mergers and the associ-
ated electromagnetic counterparts.

Finally, our results are systematically improvable with more 
observations. For example, there are several candidates for NSs 
with very large masses (see, for example, ref. 29). If even one of these 
stars turns out to have a mass significantly larger than 2M⊙, this 
would impose strong new constraints on the EoS and for example 
imply that the conformal bound must be broken. Similarly, with 
many binary-NS merger observations currently recorded by LIGO/
Virgo, the current limits on tidal deformability will inevitably 
become tighter, enabling additional improvements to our analysis. 
With these advances and the road map laid out in our work, further  

significant progress in understanding the nature of ultra-dense mat-
ter inside NSs can be expected in the near future.

Online content
Any methods, additional references, Nature Research reporting 
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tion, acknowledgements, peer review information; details of author 
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Fig. 2 | Characterization and microscopic interpretation of the equations of state. a, A 3D rendering of trajectories of a representative subset of 
interpolated (thin black lines) and hadronic (thick black lines) EoSs in a space spanned by the polytropic index γ, the pressure ratio p/pFD and the squared 
speed of sound c2s

I
. The solid blue and empty cyan diamonds mark the centres of 1.4M⊙ NSs, and the solid red and empty magenta circles denote the 

same for Mmax
I

 stars. The thick light blue line denotes the region of the 3D space spanned by the high-density pQCD EoS, and the region occupied by 
low-density matter is indicated by the label ‘Nucl’. b,c, Projection of the 3D image to the p/pFD–γ (b) and c2s

I
–γ (c) planes. In c, the light blue star indicates 

the high-density conformal pQCD limit. An animation of the figure is available as Supplementary Video 1.
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c2
s = dP(ε)

dε

γ = d log P
d log ε

P/PFD

Heavy neutron stars from 
purely hadronic model EoS

Interpolated EoS 
(contains quark)

Clear separation!

Annala,Gorda,Kurkela,Nättilä,Vuorinen, Nat.Phys.(2020)



Quark core is not “exotic” anymore
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Fig. 3 | The size of the quark core. Predictions for the radius and the mass 
of the quark cores in maximally massive NSs are displayed. The maximal 
value that the speed of sound squared c2s

I
 reaches in each individual 

EoS is indicated by the colour coding of the corresponding point. Points 
corresponding to lower c2s

I
 values are drawn on top of those corresponding 

to higher ones. The NS in the inset visualizes a 12!km, 2M⊙ star with a 
6.5!km quark core, built with a subconformal (c2s<1=3

I
) EoS.

NATURE PHYSICS | www.nature.com/naturephysics



Summary
Developed QCD-based & model-independent calculations of 
the dense matter EoS: 

1. Refined pQCD calculation of the EoS: 
  - Performed the novel calculation in perturbative QCD 
  - Result implies that the applicability is extended compared  
    with the preceding calculation; pQCD is not useless 

2. Observational constraints and quark core: 
  - Rapid slope change (likely a crossover) implied by the  
    calculation 
  - This may be identified with the emergence of quark core; it is  
    not exotic anymore
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