SN1987Aモデルの重力崩壊計算が示す コンパクト天体の性質

The compact remnant of SN1987A: implication from realistic CCSN simulations

<u>Ko Nakamura (Fukuoka Univ.)</u>

T. Takiwaki (NAOJ), K. Kotake (Fukuoka Univ.)

中性子星の観測と理論 - 研究活性化ワークショップ @ zoom Aug. 10-12th, 2021

CONTENTS:

INTRODUCTION

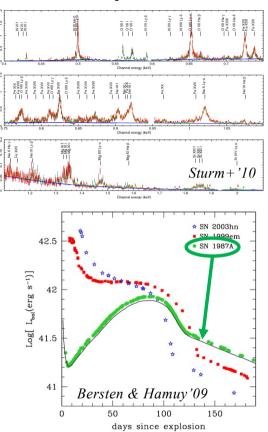
Observational features of SN 1987A Neutron star?

New progenitor model

Slow merger of stars in a binary system

Our 3D CCSN simulation

Explosion properties including NS mass and kick velocity

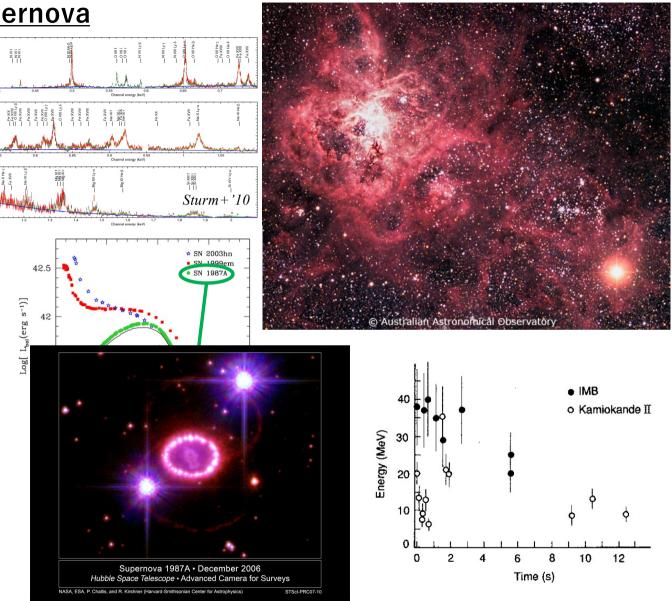

SUMMARY

SN 1987A - the most well observed supernova

✓ emerged in LMC ($D \sim 50 \text{ kpc}$)

✓ EM light curve & spectra → $E_{exp} \sim 1.2$ foe, $M_{Ni} \sim 0.07 M_{sun}$

 \checkmark neutrino detection



SN 1987A - an anomalous supernova

- ✓ emerged in LMC ($D \sim 50$ kpc)
- ✓ EM light curve & spectra → $E_{exp} \sim 1.2$ foe, $M_{Ni} \sim 0.07 M_{Sun}$
- \checkmark neutrino detection
- ✓ red → blue supergiant progenitor
 Sk 69°202
- ✓ chemical anomalies: He & N-rich (CNO process) Ba-rich (s-process)
- ✓ triple-ring nebula
- ✓ The central remnant (NS/BH) is not yet confirmed.

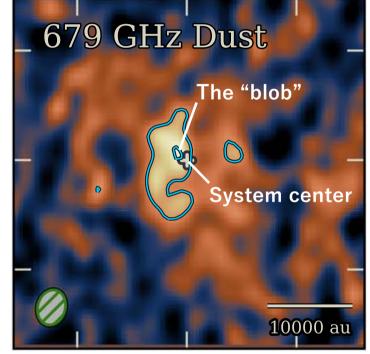
NEUTRON STAR IN SN 1987A

High Angular resolution Observation by ALMA

Cigan+'19 found clumpy dust emission in the ejecta of SN 1987A.

A dust peak (the "blob") could be due to

- 1) slow-moving reverse shock (unlikely),
- 2) heating from radioactive isotopes (unlikely),


3) heating from a compact source (the most likely).

a) X-rays from a neutron star surface?

b) synchrotron radiation (pulsar wind)?

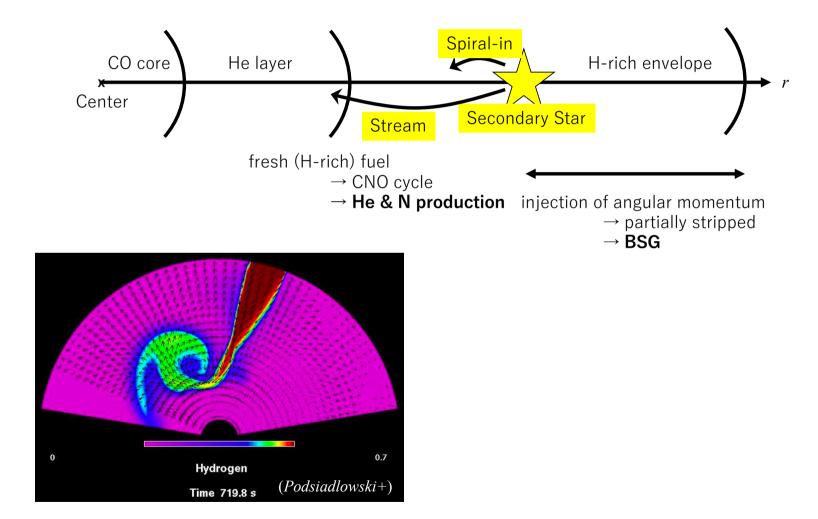
c) black hole jet?

If there is a neutron star in the blob, the offset between the blob and the system center suggests $v_{NS} \sim 700 \text{ km/s}$. One of multiwavelength views of the ejecta in SN 1987A. The cyan contours represent the 679 GHz dust emission at 3 σ and 5 σ . The small plus sign denotes the system center. The small 5 σ cyan contour just northeast of the center of the remnant is the so-called "blob." (Fig 3a in Cigan+'19)

Summary of observational features

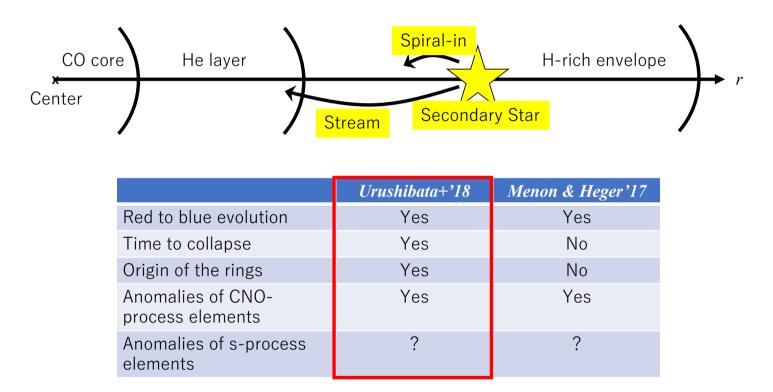
Progenitor model (stellar evolution)

CCSN model (core collapse and explosion dynamics)


Ejecta and CSM interaction (stellar environment)

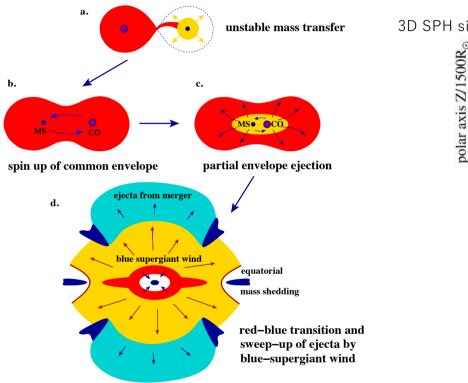
- ✓ emerged in LMC ($D \sim 50$ kpc)
- ✓ red → blue supergiant progenitor Sk - 69°202
- ✓ chemical anomalies: He & N-rich (CNO process) Ba-rich (s-process)
- ✓ EM light curve & spectra → $E_{exp} \sim 1.2$ foe, $M_{Ni} \sim 0.07 M_{Sun}$
- \checkmark neutrino detection
- ✓ The central remnant is a NS with $v_{\rm NS}$ ~ 700 km/s?

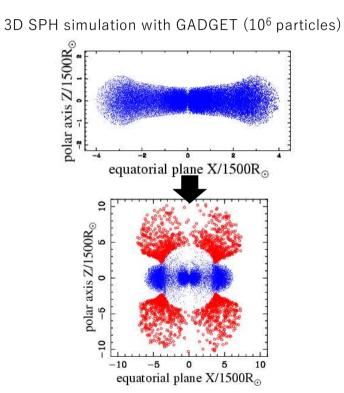
✓ triple-ring nebula

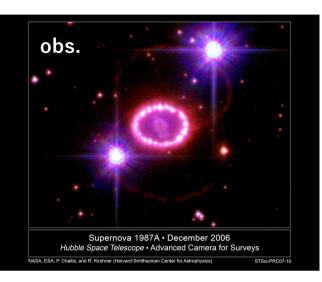

Slow Merger Scenario - new progenitor models

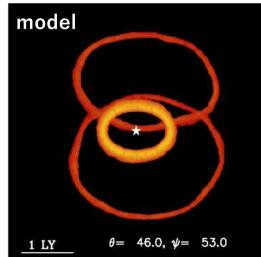
Urushibata+'18; Menon & Heger'17

Slow Merger Scenario - new progenitor models


Urushibata+'18; Menon & Heger'17



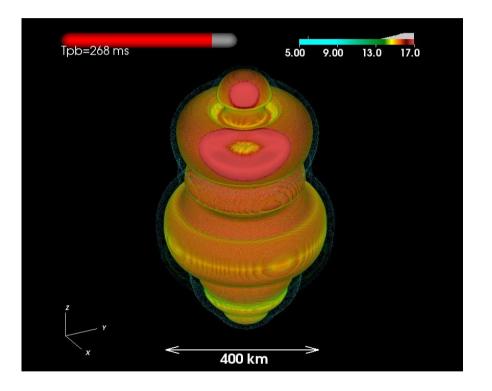

We use the best-fit model $(14 + 9 M_{sun} \rightarrow 18.3 M_{sun})$ from *Urushibata+'18* for our core-collapse simulation.


Slow Merger Scenario - the triple-ring nebula

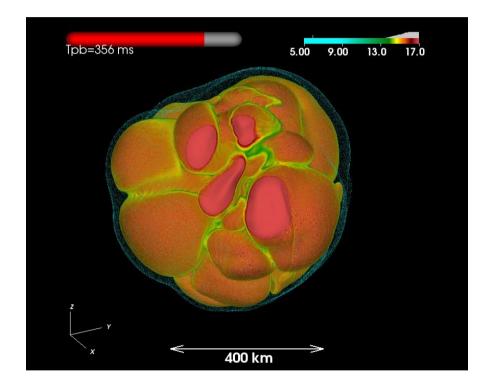
Ivanova+'02; Morris and Podsiadlowski '07

Numerical Scheme for Core-Collapse Simulation

✓ **<u>3DnSNe code</u>** (*Takiwaki+'16,'18*) with some updates:


- Isotropic Diffusion Source Approximation (IDSA; *Liebendoerfer+'09*) scheme for multi-energy 3-flavor (v_{e} , \bar{v}_{e} , v_{x}) neutrino transport.
- state-of-the-art neutrino opacities (Kotake+'18).
- effective GR potential.
 - EoS: LS220 + Boltzmann gas.
 - 13- α (He-Ni) nuclear network.
 - \rightarrow nucleosynthesis
 - + energy feedback.

Model	Weak Process or Modification	References
set1	$ u_e n \rightleftharpoons e^- p$	Bruenn (1985)
	$ar{ u}_e p \rightleftharpoons e^+ n$	Bruenn (1985)
	$\nu_e A' \rightleftharpoons e^- A$	Bruenn (1985)
	$\nu N \rightleftharpoons \nu N$	Bruenn (1985)
	$\nu A \rightleftharpoons \nu A$	Bruenn (1985), Horowitz (1997)
	$\nu e^{\pm} \rightleftharpoons \nu e^{\pm}$	Bruenn (1985)
	$e^- e^+ \rightleftharpoons \nu \bar{\nu}$	Bruenn (1985)
	$NN \rightleftharpoons \nu \bar{\nu} NN$	Hannestad & Raffelt (1998)
set2	$ u_e A \rightleftharpoons e^- A'$	Juodagalvis et al. (2010)
set3a	$ u_e + ar{ u}_e \rightleftharpoons u_x + ar{ u}_x$	<u>Buras et al. (2003); Fischer et al. (2009)</u>
set3b	$ u_x + \nu_e(\bar{\nu_e}) \rightleftharpoons \nu'_x + \nu'_e(\bar{\nu'_e}) $	<u>Buras et al. (2003); Fischer et al. (2009)</u>
set4a	$ u_e n \rightleftharpoons e^- p, \;\; ar{ u_e} p \rightleftharpoons e^+ n$	Martínez-Pinedo et al. (2012)
set4b	$NN \rightleftharpoons \nu \bar{\nu} NN^*$	<u>Fischer</u> (2016)
set5a	$ u_e n \rightleftharpoons e^- p, \ \ \bar{\nu}_e p \rightleftharpoons e^+ n, \nu N \rightleftharpoons \nu N$	Horowitz (2002)
set5b	$m_N ightarrow m_N^*$	Reddy et al. (1999)
set6a	$g_A ightarrow g_A^*$	<u>Fischer</u> (2016)
set6b	$\nu N \rightleftharpoons \nu N$ (Many-body and Virial corrections)	Horowitz et al. (2017)
set6c	$\nu N \rightleftharpoons \nu N$ (Strangeness contribution)	Horowitz (2002)


Table 1 in Kotake+'18

Comparison between 2D and 3D Simulations

2-dimensional simulation for SN 1987A progenitor. (symmetry axis along the z-axis.)

Standing Accretion Shock Instability (SASI). Very prolate. Earlier shock expansion. 3-dimensional simulation. (no symmetry is assumed.)

Convective motion. Nearly spherical. Slower evolution.