2021/5/17 Debugging
Takashi Hachiya, Maya Shimomura (NWU)
Genki Nukazuka, Itaru Nakagawa (RIKEN)

Checking Upstream Variables than ROC_DATA


```
CH1: SC_OUT_ON
CH2: SC_OUT_OP
M:CH1-CH 2
CH3: DATA_TO_SERIAL_OUTPUT
CH4: SC_DATA_IN
```

Most upstream variable at SC_FPGA@FEM

Seem to be all consistent between SC_OUT@FPHX = SC_DATA_IN = DATA_TO_SERIAL_OUTPUT

Various Pattern Attempts

Pattern	pattern			Consistency Level
	10100000	10100000	10100000	2
	01000000	01000000	01000000	2
	01100000	01100000	01100000	2
	11000000	11000000	11000000	2
	10110000	10110000	10110000	2
	11010000	11010000	11010000	2
	10101000	10101000	10101000	2
	10111000	10111000	10111000	2
	10010100	10010100	10010100	2
	11001100	11001100	11001100	2
	10101011	10101011	10101011	2 2: Perfect
128	10000000	00000000	00000000	$1 \quad 0:$ Bad at all
129	10000001	10000000	10000000	1
130	10000010	10000000	10000000	1
131	10000011	10000011	10000011	2

Chip SC_OUT is as expected, but missing bits in FEM SC_FPGA. Chip-2, Chip-3 both behaves the same.

Slow Control Command Sequence

- Tab-8 -> Chip-2 -> Side-1
- Type in LVDS Current
- Press "Write" -> "Write" \longrightarrow

This procedure is different from December Press "Set" -> "Write"

The sequence in December was inadequate.
According to FPHX manual,
"Set" commands resets all register bits to be 1

Attempt Failed Pattern in December

Correct SC Command Sequence

- Select Tab (8)
- Select Chip (2)

STEP1

- Select Side (1)

> Also, specify FEM address on GUI and it has to be matched with the assigned FEM address by the rotary switch!!

- Type in LVDS Current

STEP2

- Press "Write" + "Write"
- Need to press "Write" twice to readback updated registered value

> STEP3 (otherwise, readback value is the left over.)

Patterns around 128

10000001 (129) is failed

CH1: SC_OUT_ON
CH2: SC_OUT_OP
M: CH $1-\mathrm{CH} 2$
CH3: DATA_TO_SERIAL_OUTPUT
CH4: SC_DATA_IN

10000011 (131) is OK

Remains mystery. However, we decided to move on for now. Since the most of cases seem to be successful. We'll come back for debugging later.

VME-BUS transmission of readback values

WE_SC_VME @ SlowControl_FEM.vhd

- WE_SC_VME becomes active only when FEM address is specified.
- We have to specify the FEM address to make WE_SC_VME active.
- See next page.

Specifying FEM Address

1. Set Rotary Switch to 6 on FEM board
2. Set FEM \#6 in Nevis GUI

Control: (192.168.11.38) May 17, 2021

OK, WE_SC_VEM becomes active.

Now READBACK words suppose to be transmitted from VEM to

FEM Debugging Conclusion

- The Register values monitored at FEM SC FPGA seem to be consistent (most of the cases) with the signal pattern monitored by the interception board, which was confirmed to be consistent with input values at GUI.
- The reason why inconsistency observed in April was due to inadequate SC command sequence. It has to be "Write" + "Write", not "Set" + "Write".
- Need to specify FEM address to activate VME_BUS transmission of the readback values.
- The readback value at FEM SC FPGA becomes inconsistent for register values 128, 129, 130 with the signal pattern in FPHX output. Somehow the pattern bit is lost during ROC->FEM transmission.
- There can be more patterns which fail if we scan through all 8 bit patterns.
- We decided not to debug this further for now. We'll move on to FEM-IB check and will come back for debugging later.

FEM-IB

FEM-IB I/O Structure

FEM INTERFACE BOARD
Block Diagram
6/24/2009

Fig. 13. Block diagram of the FEM Interface Board.

FEM-IB_top.vhd (1008版)

EFEM_IB_top.shd

ADOR_MIE else WEDGE_ADDR_ME_int; 'M

SCK_SC MEE $<=$ CLK SLON:
Inst_sc_command_parser: sc_command_parser PORT MAP(MM \Rightarrow CLK_sLON, - -BCo_CLK,
Comand $\quad \Rightarrow$ Comwn FEM_IB, M-

START_BCO \Rightarrow START-BCD,
${ }^{2}$ M

Inst_receive_block: receive block Pogi MAP(MM

1:~M

DATA_OTR_OUT_ETH($(9)==$ READ_ETH_int; $/ M$
DATA_ONTR_OUT_ETH(1)

TM DATA_OUT_SC = DATA_OUT_SC_FEM_IB When (COMMOND_ME_Int(5) = ' 1 ') else DATA_OUT_SC_FEM;
DATA_IO_ETH = DATA_OUT_SC when (USE_ETH = ' 1 ' and DATA_ONTR_IN_ETH($)=$ ' 1 ') else "ZZZZZZZZ"; 'N

BCD_OUT_inst: obuFDS

eneric map
IOSTMOAR
FEH_LB_top.vid 578 L3az (VIDI)

ETH vs USB Output

1008版とstandalone版のFEM＿IB＿top．vhd を比較すると，1008版のETHに出力する モジュールに相当するUSB出力モジュー ルがstandalone版には無いように見える。 これはstandalone版に新たにUSBに出力 するモジュールを追加しなければならな そう。

DATA＿IO＿USBを追加し，USE＿USBで activateするようなFunctionを追加

ETH vs USB Output

DI_SC_VME Monitoring

CH1: SC_OUT_ON
CH2: SC_OUT_OP
M: CH $1-\mathrm{CH} 2$
CH3: DATA_OUT_SC_int (FEM)
CH4: DI_SC_VME (FEM-IB)

- DATA_OUT_SC_int @FEM contains header word. Readback data follows the header.
- OK, Expected Readback pattern is also observed at DI_SC_VME in FEM-IB.

FEM-IB Conclusion

- Consistent readback values are observed in FEM-IB as well.
- The next step is to implement USB module to transmit readback values to PC .

SC Transmission to Specific CHIP-ID\&Module

- Tracing SC command transmission from PC to FPHX chip (done) by the end of Dec. 2020.
- Return path is completed to FEM-IB by May $17^{\text {th }}$

