SAMURAI-TPC a detector for multi-fragmentations

TadaAki Isobe RIKEN, Nishina Center

Contents

- Introduction
- Physics motivation for the development of SAMURAI-TPC
- Experimental condition @RIBF
- Basic design of chamber
- GEANT4 simulation
- Pad designing
- Readout electronics
- Summary

• **Samurai** is spectrometer by using superconducting dipole magnet at RIBF.

 Superconducting Analyzer for Multi-particle from Radio Isotope Beams.

Samurai is the term for the military nobility of pre-industrial Japan. Ref. wikipedia

SAMURAI-TPC Collaboration

Determination of the Equation of State of Asymmetric Nuclear Matter

- The collaboration is formed by 8 Countries, 43 researchers.
 - http://groups.nscl.msu.edu/hira/sep.htm
- NSCL/MSU: M.B. Tsang, W.G. Lynch, Z.Chajecki, G. Westfall, P. Danielewicz, E. Brown, A.Steiner
- Texas A&M Univ.: S. Yennello, A. McIntosh
- Western Michigan Univ.: Michael Famiano
- Univ. Notre Dame: U. Garg
- GSI: W. Trautmann, Y. Leifels
- Daresbury Lab.: R. Lemmon
- INFN/LNS: G. Verde, A. Pagano, P. Russotto, M. di Toro, M. Colonna, A. Bonasera, V. Greco
- Univ. Budapest : V. Baran
- SUBATECH: C. Hartnack
- GANIL: A. Chbihi, J. Frankland, J.-P. Wieleczko
- China IAE: Y. Zhang, Z. Li, F. Lu (Peking Univ.), W. Tian (Chinese SAS)
- Brazil: S. Souza, R. Donangelo, B. Carlson
- RIKEN: H. Sakurai, S.Nishimura, Y. Nakai, A. Taketani, T. Isobe, H. Baba
- Rikkyo Univ.: J. Murata, K. leki
- Tohoku Univ.: *A. Ono*
- Kyoto Univ.: T. Murakami

Physics motivation for SAMURAI-TPC

- Declaring the symmetry energy is most important aim in terms of the development of SAMURAI-TPC.
- At the energy of RIBF, $\rho \sim 2\rho_0$ is expected to be achieved.
 - Stronger constraint on the symmetry energy.
- Observables which give information on the symmetry energy:
 - $\pi^+ \pi^-$ ratio
 - Proton neutron ratio
 - Combination with NEBURA
 - Particle flow

What we have to do with TPC

A(projectile

- Particle measurement.
 - Particle identification (dE/dX track rigidity)
 - Charged pions
 - Proton
 - Light ions
 - Fragments ...
 - momentum measurement
- Event characterization.
 - Collision centrality
 - Impact parameter (b) •
 - Central collision: b~0
 - Peripheral collision: b~r(A)
 - Reaction plane
- Multiple particle should be measured.
 - Time projection chamber is suitable detector.

A(target)

Beam condition

- 136Xe primary beam: 350AMeV 10pnA
- Target secondary beam is neutron rich Sn isotope: ¹³²Sn
- 2kcps ¹³²Sn beam can be expected
 - LISE++ calculation
- 0.1mt ¹²⁴Sn target: 0.15% event rate (according to PHITS)
 - 3Hz for ¹³²Sn+¹²⁴Sn, 5000Hz for ¹¹²Sn+¹¹²Sn

Large number of particles measured by TPC

- Large dynamic range on Z (and N)
 - Most of them are protons
 - $Y(\pi) \sim 0.01 * Y(p)$
- High-multiplicity up to ~100

Basic design of chamber (as of today) stable operation is most important

Designing started

- Technical designing mainly by MSU, Texas-A&M.
 - Production is supposed to start at the next physical year.
- Active target mode operation is considered.
 - Surround the all of TPC with SAMURAI vacuum chamber.

*Trimetric

SAMURAI-TPC

(Urgent) Simulation study for designing

- TPC pad geometry have to be fixed to finalize pad and following electronics design.
 - Mainly based on two track separation.
 - Efficiency of low momentum tracks in central collisions.
 - Also based on energy resolution.
 - PID performance.
- Can we perform the stable TPC operation even under the high intensity heavy ion beam?
 - Most of the projectile pass through the target and deposit many electrons in chamber.
 - We might need a Faraday cage around the beam.

Simulation scheme

Event display

- Deposited energy on each readout pads.
 - -108×108
 - Tracks by light ions
 can be seen

drift

beam

TPC PID performance (8x12mm pad)

Single particle

132Sn+132Sn min. bias

de/dx resolution
pion@140MeV/c single:13.3% <-> min. bias: 16%
proton@210MeV/c single:12.7% <-> min. bias: 14%

Readout electronics

- At the first stage of SAMURAI-TPC experiment, STAR-FEE is planned to be used.
 - Made for 136,608 channel pad readout.
 - 6-12MHz 10-bit FADC, dynamic range of 800:1.
 - Have to learn STAR-DAQ system, and to figure out what we have to modify.

- After GET is ready, we would like to migrate to GET.
 - For that, we have to remain the room to migrate to GET from STAR-FEE.
 - We think to make adopter between FEE and pad plane.

Readout pads

- Started to design the pads adopted to STAR-FEE.
- X-talk from next pad is concerned in terms of tracking small-Z particles.

Data rate estimation

- On the assumption of taking all of the data for drifting electrons.
- 55cm drift, drift velocity is ~5cm/μsec.
- 10MHz, 10-bit digitization.
- 108x108 pads.
- 2% reduction with zero suppression.
- 50kByte/trigger.

- All of ¹³²Sn+¹³²Sn data can be taken.
 - 3Hz trigger rate.
 - 150kByte/sec.
- Part of ¹¹²Sn+¹¹²Sn data can not be taken.
 - 5kHz trigger rate.
 - 250MByte/sec is necessary.
- STAR-DAQ can handle up to 30MByte/sec data rate.

Need trigger.

Trigger for Heavy Ion Collision experiment

- STAR-DAQ seems not to have internal trigger mechanism.
 - Need to think external trigger.
- GET can easily realize level2 type trigger.
- It takes ~1minute to reconstruct the tracks in most central collision events.
- Tracking type trigger is not realistic.

TPC sector - one η bin

-0.0010.0005

- Hough transform might realize tracking base trigger.
 - ALICE

Timescale towards the first experiment

ID	Task Name	2008	2009 20	010 2011 1 02 03 04 01 02	2012	2013	2014	2015
0	SAMURAI TPC SYSTEM					anaziaoiai	anaziaorai	
1	SAMURAI TPC	-		4				
2	Chamber design and construction	-		•	— •			
3	Design	-						
4	Procurement and fabrication				<u>ר</u>			
5	Assembly	-			Č			
6	Detector design and construction	1		4		÷		
7	Design	-		P				
8	Procurement and fabrication				2			
9	Installation of detector in TPC chamber				Č			
10	Testing							
11	contingency	-			Č			
12	Shipping	1			Č	1		
13	Installation and testing at RIKEN	1						
14	Commisioning at RIKEN					🏳		
15	Gas Handling System							
16	Laser Calibration System	1						
17	TPC electronics and data acquisition	1						
18	Trigger Scintillation Array	1						
19	SAMURAI Dipole Magnet		i i)		
20	Electronics reconfiguration	-					*	
	Task C)	Rolled Up Task		External Tasks	[
Project: SAMURAI TPC SYSTEM Date: Wed 4/14/10 Progress Milestone Summary			Rolled Up Mileston	e 🛇	Project Summary	\bigtriangledown		
			Rolled Up Progress	6	 Group By Summary 	-	—₽	
			Split		Deadline	\hat{v}		
Page 1								

Test chamber

- To test FEE for SAMURAI-TPC.
 - Can STAR-FEE sustain heavy ion operation?
- To test laser calibration system.
- Furthermore, supposed to be a tracker for RIBF experiments.
- Wire/MicroMEGAS/GEM amplification.
- Heavy Ion beam test with MPGD type readout.

Summary

- The SAMURAI-TPC development has been started and the designing is on-going.
- The STAR-FEE is planned to be used at the first stage.
 - Migration to GET.
- High data through put from large number of pad is expected, and trigger mechanism should be considered.