NISHINA CENTER

$\begin{array}{l} \textbf{SHOGUN}\\ \textbf{a next generation } \gamma \textit{ ray spectrometer}\\ \textbf{for fast beams at the RIBF} \end{array}$

Heiko Scheit 紗糸 俳子

January 11, 2011 2011年1月11日

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- <u>SHOGUN</u>
- Problems
- <u>Alternatives</u>
- Light Conversion
- <u>Summary</u>

SHOGUN

- S cintillator based H igh-resolution
- G amma-ray spectrometer for U nstable N uclei
- γ ray spectrometer optimized for in-beam γ ray spectroscopy at RIBF beam energies
- Construction proposal submitted to last NP-PAC (Dec. 2009)

Doppler Effect

Doppler Shift

Doppler Broadening

Emission Angle

Velocity

Summary

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

SHOGUN

Problems

Alternatives

Light Conversion

Summary

Doppler Shift and Broadening

Doppler Effect

- **Doppler Shift**
- **Doppler Broadening**
- Emission Angle

Velocity

- Summary
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- **SHOGUN**
- Problems
- **Alternatives**
- Light Conversion
- <u>Summary</u>

Doppler Shift

 Lorentz transformation of 4-momenta between laboratory frame and frame of emitting nucleus

Doppler Effect Doppler Shift Doppler Broadening Emission Angle Velocity Summary In-beam γ at RIBF Which Detector? Lanthanum Bromide SHOGUN Problems

<u>Alternatives</u>

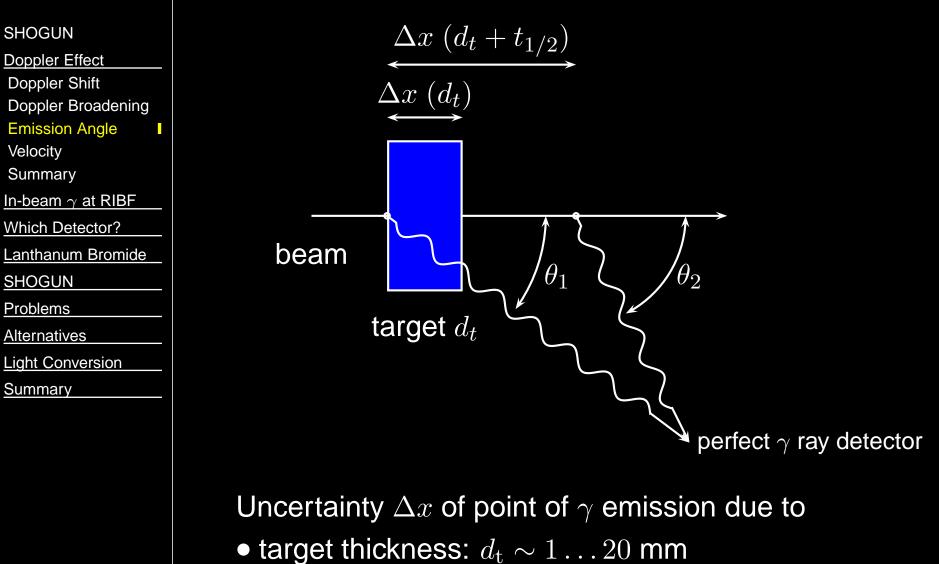
Light Conversion

Summary

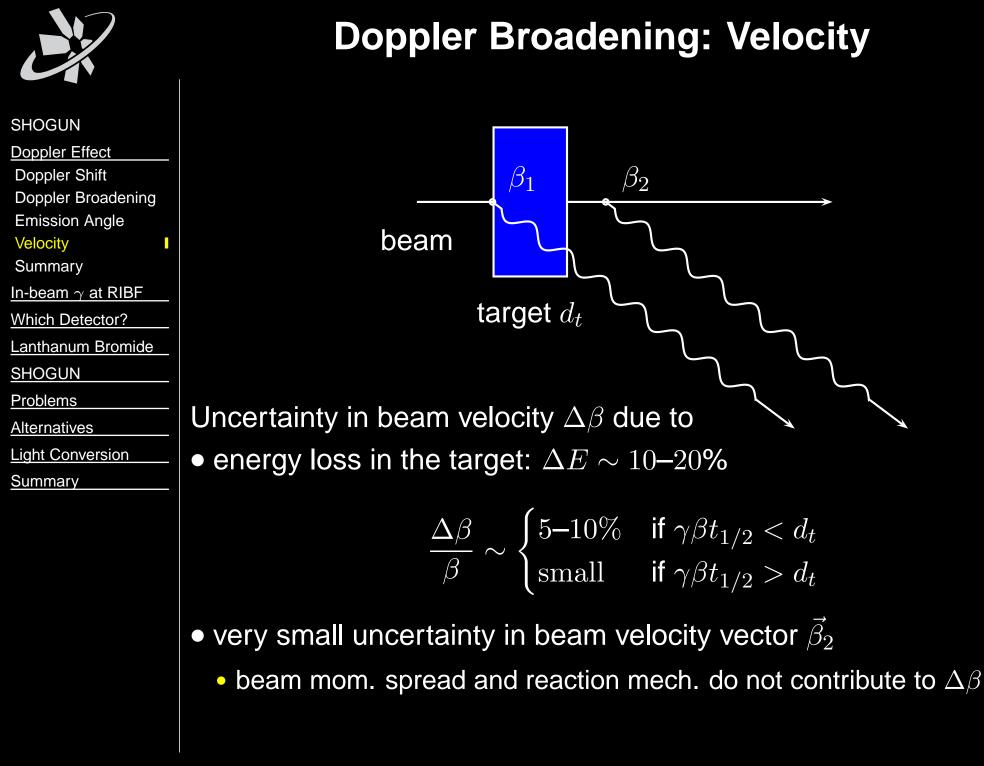
Doppler Broadening

Due to:

- uncertainty in beam velocity β : $\Delta\beta$
- uncertainty of emission angle θ : $\Delta \theta$


$$\Delta E^2 = \left(\frac{\partial E}{\partial \beta}\right)^2 \Delta \beta^2 + \left(\frac{\partial E}{\partial \theta}\right)^2 \Delta \theta^2$$

$$\frac{1}{E}\frac{\partial E}{\partial \beta} = \frac{\cos(\theta)}{1-\beta\cos(\theta)} - \beta\gamma^2$$
$$\frac{1}{E}\frac{\partial E}{\partial \theta} = \frac{\beta\sin(\theta)}{1-\beta\cos(\theta)}$$


• must reduce $\Delta\beta$ and $\Delta\theta$

Doppler Broadening: Emission Angle

• γ decay in-flight: 100 ps = 15 mm

Doppler Effect Doppler Shift Doppler Broadening Emission Angle Velocity

Summary

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Doppler Broadening: Summary

- There is a sizable **Doppler broadening** even with a perfect detector, due to an **uncertainty**
 - in the beam velocity and (energy loss in the target)
 - in the emission point of the γ ray (target thickness, lifetime of excited state)
- These contributions are **not due** to detector properties.

Doppler Effect

In-beam γ at RIBF

Boundary Conditions

Uncertainties

Doppler Broadening

Which Detector?

Lanthanum Bromide

SHOGUN

Problems

Alternatives

Light Conversion

<u>Summary</u>

In-beam γ ray Spectroscopy at the RIBF

Doppler Effect

- In-beam γ at RIBF
- Boundary Conditions

Uncertainties

Doppler Broadening

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Boundary Conditions

for in-beam γ ray spectroscopy at the RIBF: • beam energy: 200 MeV/u $v/c = \beta = 0.5$

Doppler Effect

- In-beam γ at RIBF
- **Boundary Conditions**
- Uncertainties
- **Doppler Broadening**
- Which Detector?
- Lanthanum Bromide
- SHOGUN
- Problems
- **Alternatives**
- Light Conversion
- Summary

Boundary Conditions

for in-beam γ ray spectroscopy at the RIBF:

- beam energy: 200 MeV/u $v/c = \beta = 0.5$
- target thickness: $d_{\rm t} \sim 1 \dots 20$ mm
- γ decay in-flight: 100 ps \Rightarrow 15 mm
- achievable angular resolution: $\Delta \theta = 3^{\circ} = 50$ mrad (assuming a detector distance of 25 cm)

Doppler Effect

- In-beam γ at RIBF
- **Boundary Conditions**
- Uncertainties
- **Doppler Broadening**
- Which Detector?
- Lanthanum Bromide
- <u>SHOGUN</u>
- Problems **1998**
- **Alternatives**
- Light Conversion
- <u>Summary</u>

Boundary Conditions

for in-beam γ ray spectroscopy at the RIBF:

- beam energy: 200 MeV/u $v/c = \beta = 0.5$
- target thickness: $d_{\rm t} \sim 1 \dots 20$ mm
- γ decay in-flight: 100 ps \Rightarrow 15 mm
- achievable angular resolution: $\Delta \theta = 3^{\circ} = 50$ mrad (assuming a detector distance of 25 cm)
- 10–20% energy loss in target: $\Delta\beta = 5-10\%$
- NB: $\Delta \theta$ does not include detector contributions

Doppler Effect

In-beam γ at RIBF

Boundary Conditions

Uncertainties

Doppler Broadening

Which Detector?

Lanthanum Bromide

lifetime of excited state

SHOGUN

Problems

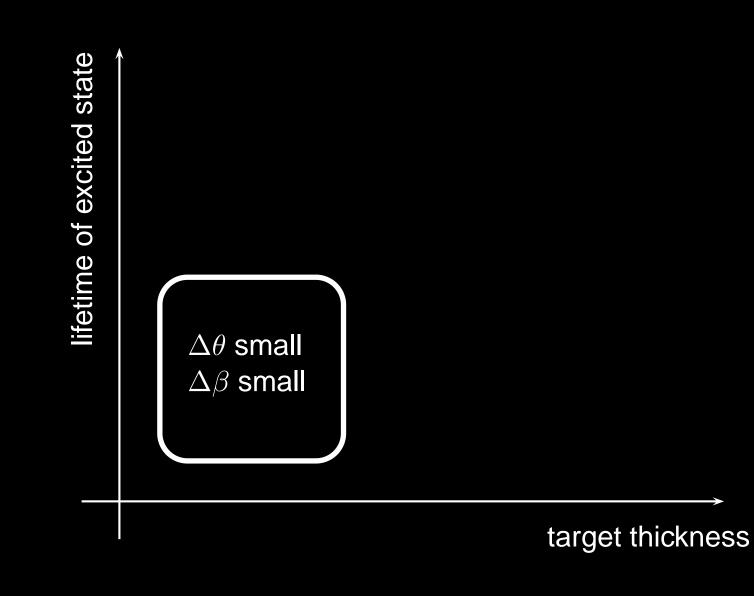
Alternatives

Light Conversion

Summary

Angular and Velocity Uncertainties

for in-beam γ ray spectroscopy at the RIBF:


target thickness

SHOGUN
Doppler Effect
In-beam γ at RIBF
Boundary Conditions
Uncertainties
Doppler Broadening
Which Detector?
Lanthanum Bromide
SHOGUN
Problems
Alternatives
Light Conversion
Summary

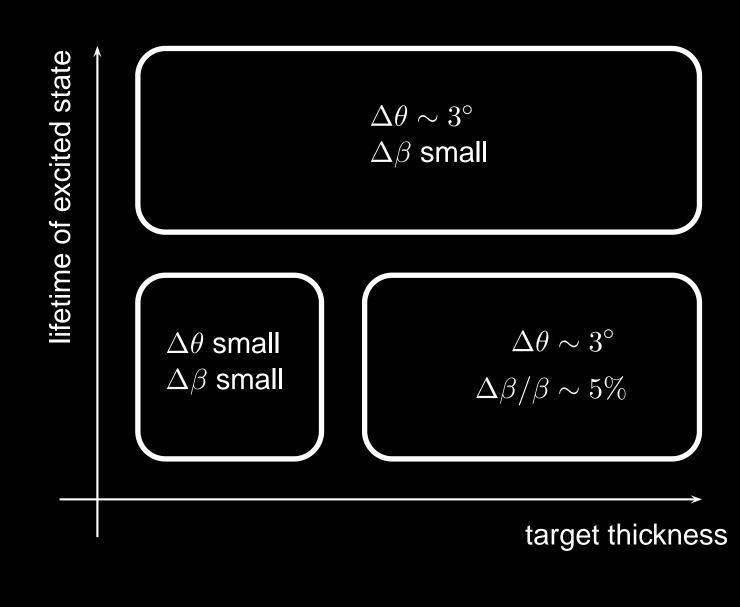
Angular and Velocity Uncertainties

for in-beam γ ray spectroscopy at the RIBF:

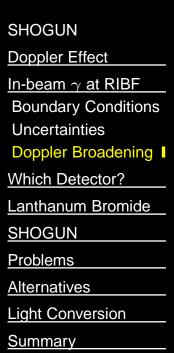
	for in-beam γ ray spectroscopy at the RIBF:				
SHOGUN					
Doppler Effect					
In-beam γ at RIBF					
Boundary Conditions	a) /	N			
Uncertainties I	ate				
Doppler Broadening	Sta				
Which Detector?					
Lanthanum Bromide	excited state				
SHOGUN	CI				
Problems	еX				
Alternatives	of				
Light Conversion					
Summary	n(
	lifetime				
	ife				
		$\Delta heta$ small		$\Delta heta \sim 3^{\circ}$ $\Delta eta / eta \sim 5\%$	
		Δeta small			
		Δp sman		$\Deltaeta/eta\sim5\%$	
					\longrightarrow
				target thic	kness

Detector WS, 2011, Jan. 11-12 - 12

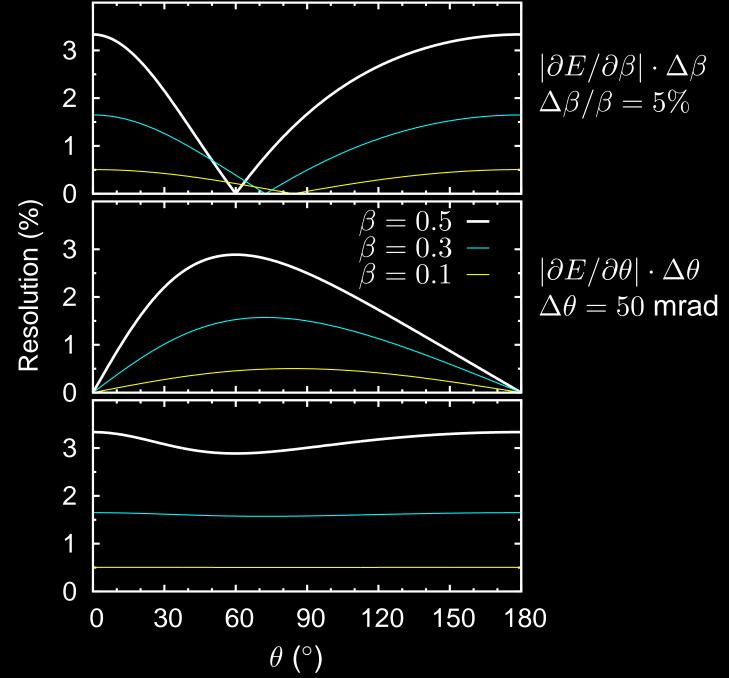
SHOGUN <u>Doppler Effect</u> <u>In-beam γ at RIBF</u> Boundary Conditions <u>Uncertainties</u> Doppler Broadening <u>Which Detector?</u> <u>Lanthanum Bromide</u> <u>SHOGUN</u> <u>Problems</u>

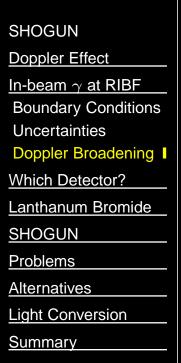

Alternatives

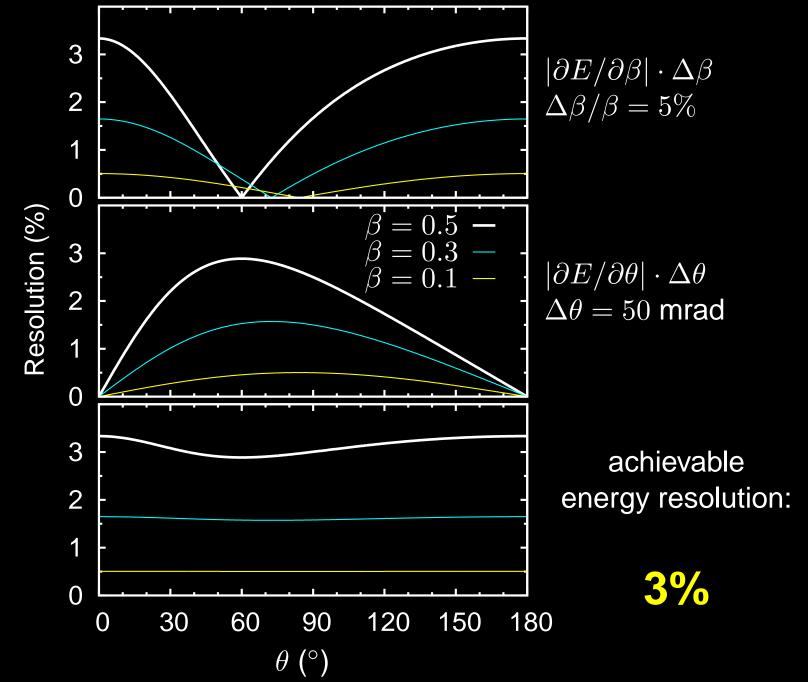
Summary


Light Conversion

Angular and Velocity Uncertainties


for in-beam γ ray spectroscopy at the RIBF:




Doppler Broadening

Doppler Broadening

Doppler Effect

In-beam γ at RIBF

Which Detector?

Which Detector?

Problems

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Which Detector?

Doppler Effect

In-beam γ at RIBF

Which Detector?

Which Detector?

Problems

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Which detector should be used?

RIKEN CNS GRAPE OR DALI2

SHOGUNDoppler EffectIn-beam γ at RIBFWhich Detector?Which Detector?ProblemsLanthanum BromideSHOGUN

Problems

Alternatives

Light Conversion

<u>Summary</u>

Which detector should be used?

RIKEN CNS GRAPE OR DALI2 MSU SeGA OR CAESAR/APEX

Problems

SHOGUN

Problems

Summary

Alternatives

Light Conversion

Doppler Effect

In-beam γ at RIBF

Lanthanum Bromide

Which Detector? Which Detector?

RIKEN	CNS GRAPE	OR	DALI2
MSU	SeGA	OR	CAESAR/APEX
GSI	RISING	OR	HD-DA Crystal Bal

SHOGUN Doppler Effect

In-beam γ at RIBF	
Which Detector?	
Which Detector?	

Problems

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

<u>Summary</u>

	RIKEN	CNS GRAPE	OR	DALI2
_	MSU	SeGA	OR	CAESAR/APEX
	GSI	RISING	OR	HD-DA Crystal Ball
	GANIL	EXOGAM	OR	Chateau de Cristal

SHOGUN Doppler Effect

Summary

In-beam γ at RIBF	
Which Detector?	R
Which Detector?	
Problems	
Lanthanum Bromide	
<u>SHOGUN</u>	
Problems	
Alternatives	
Light Conversion	

RIKEN	CNS GRAPE	OR	DALI2
MSU	SeGA	OR	CAESAR/APEX
GSI	RISING	OR	HD-DA Crystal Ball
GANIL	EXOGAM	OR	Chateau de Cristal
	HPGe based	OR	scintillator based

SHOGUN Doppler Effect

Summary

In-beam γ at RIBF
Which Detector?
Which Detector?
Problems
Lanthanum Bromide
SHOGUN
Problems
Alternatives
Light Conversion

RIKEN	CNS GRAPE	OR	DALI2
MSU	SeGA	OR	CAESAR/APEX
GSI	RISING	OR	HD-DA Crystal Ball
GANIL	EXOGAM	OR	Chateau de Cristal
	HPGe based	OR	scintillator based
re	(good) esolution	OR	good efficiency

Doppler Effect

In-beam γ at RIBF

Which Detector?

Which Detector?

Problems

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Problems of Current Arrays

(for in-beam γ ray spectroscopy with fast beams)

• HPGe

- high intrinsic resolution cannot be utilized
- very high cost for high efficiency array
- large operational costs

Doppler Effect

In-beam γ at RIBF

Which Detector?

Which Detector?

Problems

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

<u>Summary</u>

Problems of Current Arrays

(for in-beam γ ray spectroscopy with fast beams)

• HPGe

- high intrinsic resolution cannot be utilized
- very high cost for high efficiency array
- large operational costs
- Scintillator (Nal(TI), CsI(TI), CsI(Na))
 - very poor energy resolution

Doppler Effect

In-beam γ at RIBF

Which Detector?

Which Detector?

Problems

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

<u>Summary</u>

Problems of Current Arrays

(for in-beam γ ray spectroscopy with fast beams)

• HPGe

- high intrinsic resolution cannot be utilized
- very high cost for high efficiency array
- large operational costs
- Scintillator (Nal(TI), Csl(TI), Csl(Na))
 - very poor energy resolution

• both

- relatively poor time resolution
- count rate is limited

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

Which detector?

 $LaBr_3(Ce)$

 $LaBr_3(Ce)$

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Lanthanum Bromide

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

Which detector?

 $LaBr_3(Ce)$

 $LaBr_3(Ce)$

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

<u>Summary</u>

Which detector?

LaBr₃(Ce) based detectors!

SHOGUN
Doppler Effect
In-beam γ at RIBF
Which Detector?
Lanthanum Bromide
Which detector?
LaBr ₃ (Ce)
$LaBr_3(Ce)$
SHOGUN
Problems
Alternatives
Light Conversion
Summary

LaBr₃(Ce)

 new scintillation crystal invented in 2001 by Delft University, Netherlands; licensed to Saint-Gobain

• marketed under name: BrilLanCe 380

SHOGUN
Doppler Effect
In-beam γ at RIBF
Which Detector?
Lanthanum Bromide
Which detector?
LaBr ₃ (Ce)
$LaBr_3(Ce)$
SHOGUN
Problems
Alternatives

- Light Conversion
- <u>Summary</u>

LaBr₃(Ce)

- new scintillation crystal invented in 2001 by Delft University, Netherlands; licensed to Saint-Gobain
- marketed under name: BrilLanCe 380
- most remarkable property:
 - energy resolution of 2.6% at 662 keV
 - compare to Nal(TI): 6.5%

SHOGUN <u>Doppler Effect</u> <u>In-beam γ at RIBF</u> <u>Which Detector?</u> <u>Lanthanum Bromide</u> Which detector? <u>LaBr₃ (Ce)</u> LaBr₃ (Ce) <u>SHOGUN</u> <u>Problems</u> <u>Alternatives</u>

- Light Conversion
- <u>Summary</u>

LaBr₃(Ce)

- new scintillation crystal invented in 2001 by Delft University, Netherlands; licensed to Saint-Gobain
- marketed under name: BrilLanCe 380
- most remarkable property:
 - energy resolution of 2.6% at 662 keV
 - compare to Nal(TI): 6.5%
- but, until recently no large(ish) crystals
 - strong anisotropic thermal expansion (a-axis: 22 ppm/K; c-axis: 8 ppm/K)
 - prone to cracking during cooling after growth
- now: "127 mm ingots ... are routine" (Saint-Gobain)

SHOGUN	
Doppler Effect	-
In-beam γ at RIBF	
Which Detector?	-
Lanthanum Bromide Which detector?	
LaBr ₃ (Ce)	
LaBr ₃ (Ce)	
<u>SHOGUN</u>	
Problems	
Alternatives	
Light Conversion	
Summary	

LaBr₃(Ce)

• comparison to common scintillators:

	Nal(TI)	BaF_2	LaBr ₃ (Ce)
Light Output (1/keV)	38	2 10	>71
Decay Time (ns)	250	.7 630	16
Z	11, 53	56, 9	57, 35
Density (g/cm ³)	3.67	4.88	5.1
Temp. Coef. (%/K)	-0.3	0 1.1	0.0
Max. Sc. Wavel. (nm)	415	220 310	380
Energy Res. (%)	7	12	2.5
Time Res. (ns)	2.5	0.2	0.2
Linearity	low	low	very high
Hygroscopic	yes	no	yes

• for same detector volume

$$\epsilon_{FEP} \propto \rho^{1.5} \times Z^{3.5}$$

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

SHOGUN

Detector Shape

Configurations

Setup at F8

Simulation

Simulation

Simulation

Energy Resolution

FEP Efficiency

SHOGUN 100

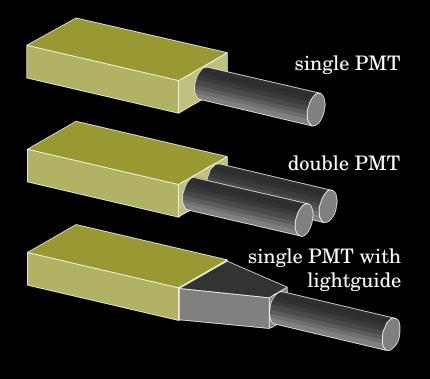
Problems

Alternatives

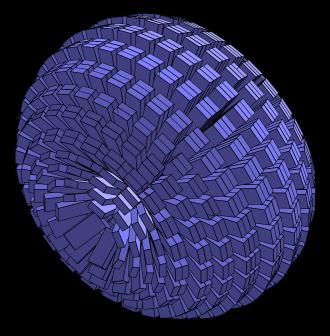
Light Conversion

<u>Summary</u>

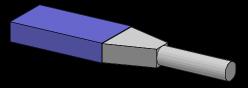
SHOGUN


Detector WS, 2011, Jan. 11-12 – 21

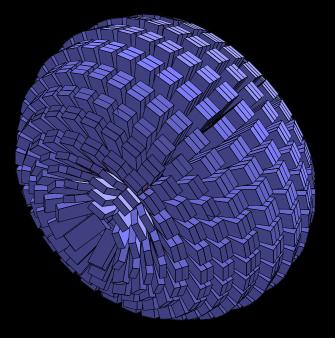
- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- SHOGUN
- Detector Shape
- Configurations
- Setup at F8
- Simulation
- Simulation
- Simulation
- **Energy Resolution**
- FEP Efficiency
- SHOGUN 100
- Problems
- <u>Alternatives</u>
- Light Conversion
- <u>Summary</u>


Detector Shape

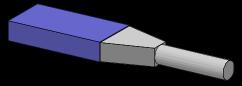
- only one detector shape to reduce detector design/development cost
- possibly place 2–3 detector in one housing, to reduce inactive material
- \bullet cuboid: 1.5 cm \times 4 cm \times 8 cm

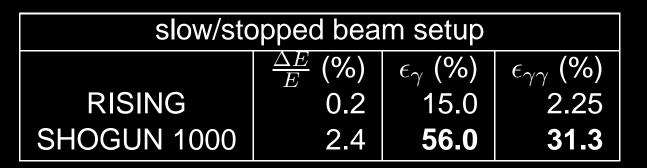


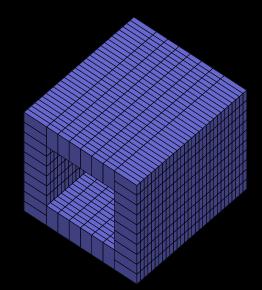
Possible Configurations


fast beam setup ($v = 0.6c$)							
	$\frac{\Delta E}{E}$ (%)	ϵ_γ (%)	$\epsilon_{\gamma\gamma}$ (%)				
Nal(TI) DALI2	10.0	23.5	5.5				
RISING	1.9	2.8	0.08				
SHOGUN 1000	3.2	35.0	12.2				

 $8 \times 4 \times 1.5 \text{ cm}^3$

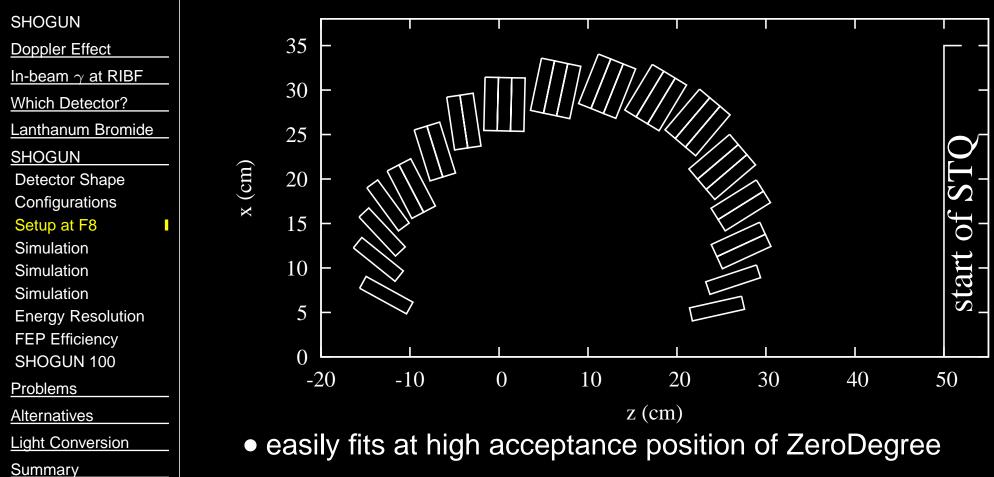


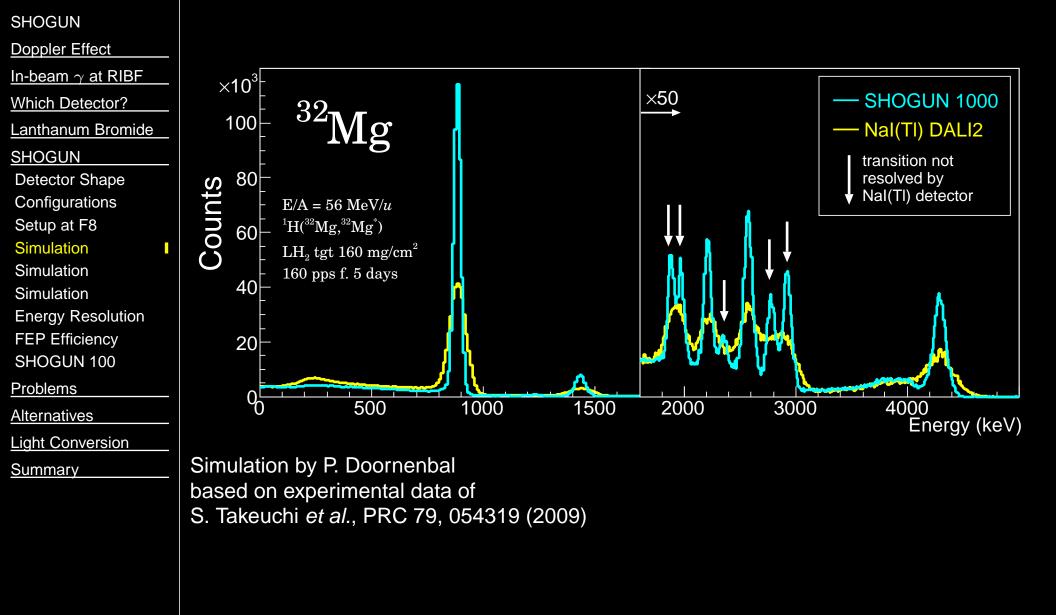

Possible Configurations



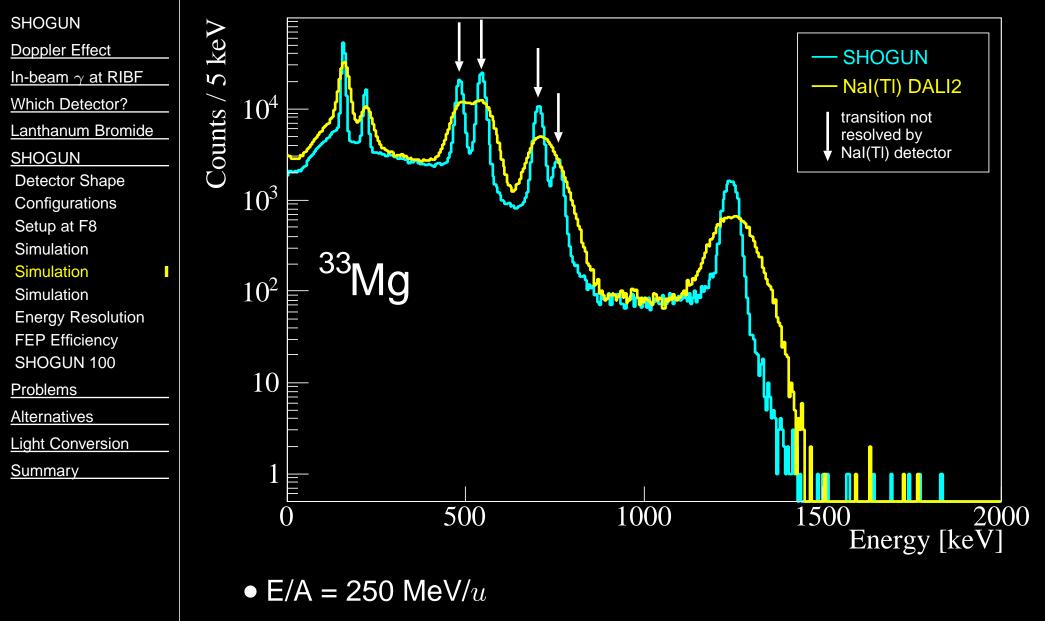
fast beam setup ($v = 0.6c$)							
	$\frac{\Delta E}{E}$ (%)	ϵ_{γ} (%)	$\epsilon_{\gamma\gamma}$ (%)				
Nal(TI) DALI2	10.0	23.5	5.5				
RISING	1.9	2.8	80.0				
SHOGUN 1000	3.2	35.0	12.2				

 $8 \times 4 \times 1.5 \ \mathrm{cm}^3$



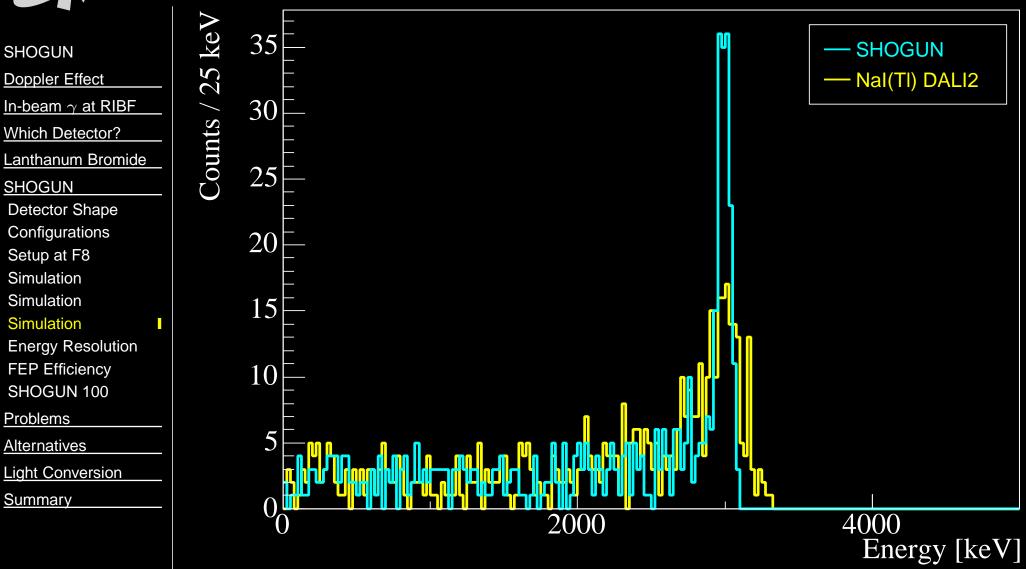

Setup at F8

 standard HPGe cannot be accommodated at forward angles



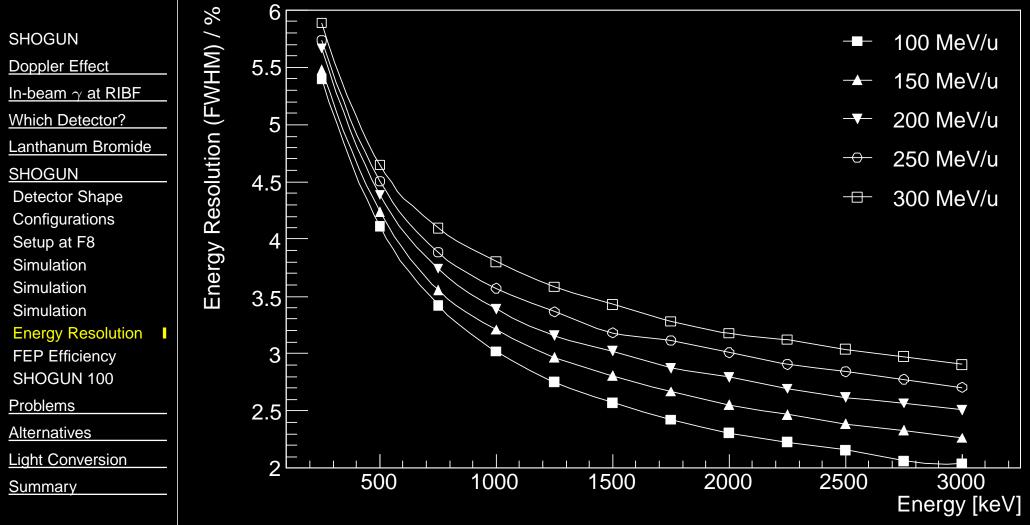
Simulation: SHOGUN 1000 and DALI2

Simulation: SHOGUN 1000 and DALI2



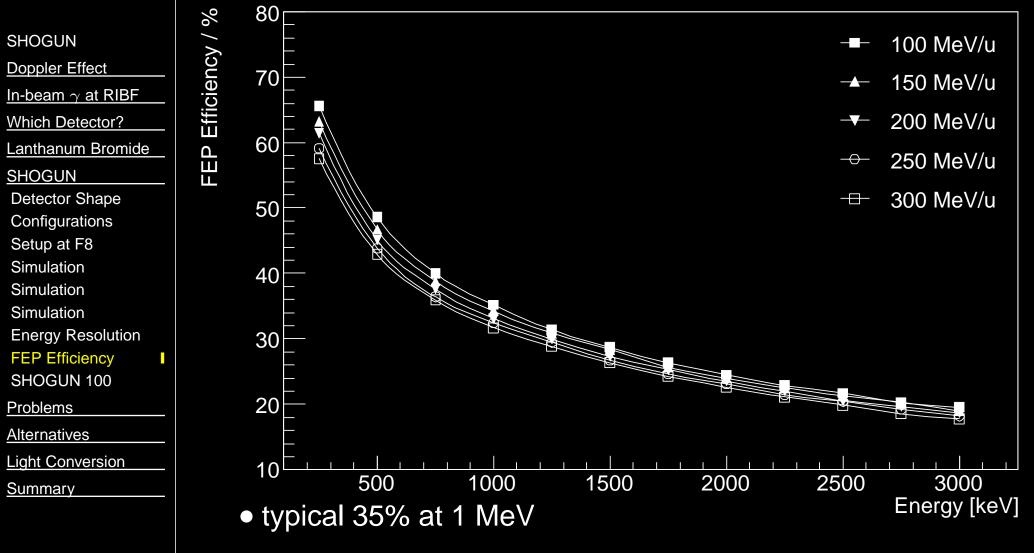
• 1n-removal from ³⁴Mg

Detector WS, 2011, Jan. 11-12 - 26


Simulation: SHOGUN 1000 and DALI2

- E/A = 250 MeV/*u*
- \bullet high-energy γ ray with low statistics

Energy Resolution



• typical: 3.5% at 1 MeV

Detector WS, 2011, Jan. 11-12 - 28

Full Energy Peak Efficiency

- can still be increased by
 - Ionger crystals (8 cm ➡ 10 cm)
 - tapered crystals, eps. for forward angles

Detector WS, 2011, Jan. 11-12 - 29

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Detector Shape

Configurations

Setup at F8

Simulation

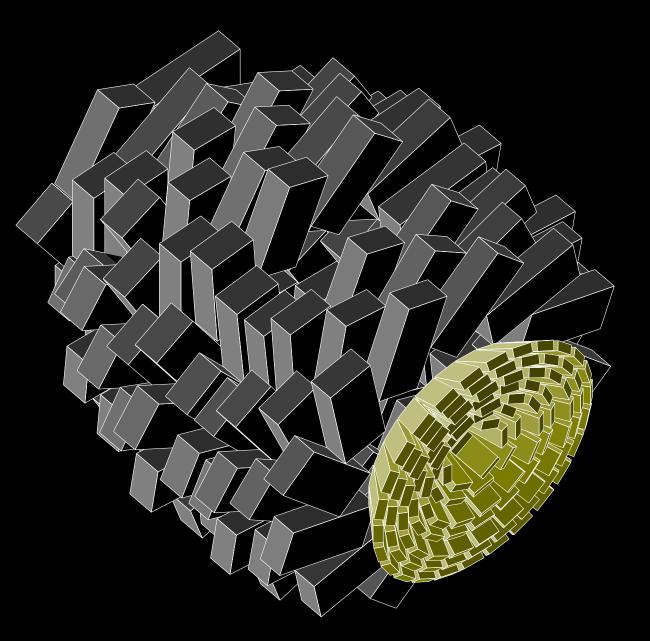
Simulation

Simulation

Energy Resolution

FEP Efficiency

SHOGUN 100


Problems

Alternatives

Light Conversion

Summary

SHOGUN 100 and DALI2

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Procurement, Patent

Alternatives

Light Conversion

<u>Summary</u>

Problems

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

SHOGUN

Problems

Procurement, Patent

Alternatives

Light Conversion

Summary

Procurement and Patent Issues

 only one supplier: Saint-Gobain US patent 7,067,816 B2 claims

• $La_{1-x}Ce_{x}Br_{3}$ with 2% < x < 90%

• single crystal $> 10 \text{ mm}^3$ grown using Bridgeman process

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Alternatives (1)

Alternatives (2)

Light Conversion

Summary

Alternatives

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- <u>SHOGUN</u>
- Problems
- <u>Alternatives</u>
- Alternatives (1)
- Alternatives (2)
- Light Conversion
- Summary

Alternatives (1)

- $LaCl_3(Ce)$: it seems there is no patent, but
 - worse resolution of 3.8% at 662 keV
 - relatively strong slow component in light output
 - high temperature coefficient (0.7%/K)
 - low density
- LaBr₃(Ce)
 - who can produce LaBr₃(Ce) detectors
 - produce it ourselves?
 - when will patent expire (???)
 - larger detectors with position sensitivity?

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- SHOGUN
- Problems
- Alternatives
- Alternatives (1)
- Alternatives (2)
- Light Conversion
- Summary _____

Alternatives (2)

- liquid Xe detectors?
 - scintillator + electron drift
 - exellent energy resolution
 - who has experience?

• Srl₂(Eu):

	Z _{eff}	Light Yield (photons/MeV)	Energy Resolution (662 keV)	Emission Range	Decay Time (ns)	Non
$SrI_2:0.5\% Eu^{2+}$	50	68,000	5.3%	~400-460	1,100	
$SrI_2:2\% Eu^{2+}$	"	84,000	3.9%	"	"	
SrI_2 :5% Eu^{2+}	"	120,000	2.8%**	"	"	
$SrI_2:8\% Eu^{2+}$	"	80,000	4.9%	"	"	
LaBr ₃ :Ce	45.7	63,000 [*]	$2.8\%^{*}$	~325-425	15(97%),66(3%)	4%
SrI ₂ :0.5% Ce ³⁺ /Na ⁺	50	16,000	6.4%	~350-475	25(47%),159(53%)	8%
$SrI_2:2\%$ Ce ³⁺ /Na ⁺	"	11,000	12.3%	"	32(46%),450(53%)	6%

- e.g. Wilson et al., Proc. of SPIE Vol. 7079 707917 (2008)
- no patent
- so far only very small crystals

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

PMT

Si-based

Summary

Light Conversion

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- SHOGUN
- Problems
- Alternatives
- Light Conversion
- PMT
- Si-based
- Summary

Photo Multiplier Tubes

- low quantum efficiency
- high gain
 - too high for LaBr₃(Ce)
 - light output of LaBr₃(Ce) a factor of 25 larger than NaI(TI)
- low gain (only few dynodes) PMT needed
- probably still the best choice
- alternative are ...

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

SHOGUN

Problems

Alternatives

Light Conversion

PMT

Si-based

Summary

Si-based Light Conversion

- (p-i-n) photo diode (PD)
 - high quantum efficiency
 - no gain
 - capacitance scales with detection area

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- <u>SHOGUN</u>
- Problems _____
- Alternatives
- Light Conversion
- PMT
- Si-based
- <u>Summary</u>

Si-based Light Conversion

- (p-i-n) photo diode (PD)
 - high quantum efficiency
 - no gain
 - capacitance scales with detection area
- avalanche photo diode (APD)
 - same as PD but gain of about 100
 - recently high resolution with LaBr₃(Ce) obtained
 - but, only small size (few mm)

- SHOGUN
- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide
- <u>SHOGUN</u>
- Problems _____
- <u>Alternatives</u>
- Light Conversion
- PMT
- Si-based
- <u>Summary</u>

Si-based Light Conversion

- (p-i-n) photo diode (PD)
 - high quantum efficiency
 - no gain
 - capacitance scales with detection area
- avalanche photo diode (APD)
 - same as PD but gain of about 100
 - recently high resolution with LaBr₃(Ce) obtained
 - but, only small size (few mm)
- silicon drift detectors (SDD)
 - high quantum efficiency
 - low capacitance independent of area
 - best resolution expected of 2.15% at 662 keV (Moszynski *et al.*, IEEE Trans. Nucl. Sci.)
 - but, time resolution not good

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

Current Status

Summary

Summary

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide

<u>SHOGUN</u>

- Problems
- <u>Alternatives</u>
- Light Conversion
- Summary
- Current Status

Summary

• in contact with other groups: PARIS, Milano group

Current Status

- prototype detectors being manufactured by Saint-Gobain
- SHOGUN workshop on Feb. 4-5
 - expand physics program
 - use at other (Japanese/East-Asian) facilities
- open questions
 - energy resolution of SHOGUN detectors
 - price per detector
 - funding: ?

- Doppler Effect
- In-beam γ at RIBF
- Which Detector?
- Lanthanum Bromide

SHOGUN

- Problems
- Alternatives
- Light Conversion
- <u>Summary</u>
- **Current Status**
- Summary

We propose to build a next-generation Scintillator based High-resOlution Gamma-ray spectrometer for Unstable Nuclei (SHOGUN)

Summary

- advantages (fast beam)
 - high (optimum) resolution (3.5% FWHM at 1 MeV)
 - very high FEP efficiency (35%)
 - fast timing
 - easy operation
 - very low running cost
- \bullet workhorse for in-beam γ ray spectroscopy at the RIBF

Doppler Effect

In-beam γ at RIBF

Which Detector?

Lanthanum Bromide

<u>SHOGUN</u>

Problems

Alternatives

Light Conversion

Summary

The End

H. Scheit, SHOGUN

Detector WS, 2011, Jan. 11-12 – 42