Hydrogen target at RIKEN. Achievements and future developments.

RIKEN	K. Ozeki, T. Ohnishi, H. Otsu, H. Takeda, K. Tanaka		
Tohoku Univ.	K. Kamei, T. Kobayashi, Y. Matsuda, T. Suda		
RCNP	H. Sakaguchi, Y. Takahashi, I. Tanihata, J. Zenihiro		
GSI	S. Terashima		
Miyazaki Univ.	Y. Maeda		
KEK	S. Ishimoto, S. Suzuki		

Motivation

Examination of the property of unstable nuclei.

Nucleon knockout reaction experiments $degree \$ using inverse kinematics. Proton elastic scattering experiments $degree \$

Solid Hydrogen Target (SHT)

Two types of geometry for each experiment.

SHT for (p,pN) reaction

Specifications

Refrigerator		
Model#	SHI, RDK-415E/CSW-71C	
Cooling method	GM cycle (double stage)	
Cooling capacity	1 st stage: 35/45 W (50K, 50/60 Hz) 2 nd stage: 1.5/1.5W (4.2 K, 50/60Hz)	
Target cell		
Material	Oxygen-free copper	
Cell size	35 mmΦ, 5 mm ^t	
Windows	9 µm ^t -Aramid film	
Target chamber		
Windows	50 µm ^t -Mylar film	

Target cell

Refrigerator+Target cell

Radiation shield

Target chamber

Uniformity of density

SHT of uniform density

Solid hydrogen growing-process

•Gas flow rate is too high

Ascention of liquid level is too fast

•Gas flow rate is too low

Liquid is confined

Low-density area

Ascention of liquid level is too slow

•Gas flow rate is appropriate

Gas is confined

Void/Low-density area

Uniformity of thickness

uniform thickness?

Target cell

(actual thickness is not measured yet)

SHT for proton elastic scattering

Specifications

Target cell		
Material	Oxygen-free copper	
Cell size	30 mmΦ, 1 mm ^t	
Windows	9 µm ^t -Aramid film	

Target cell

Large void at the center of target

Thermal conduction is too low compared with the inflow of radiation heat.

para-SHT (1)

para-SHT (2)

Summary

•Solid hydrogen target

35 mm Φ , 5 mm^t target for nucleon knockout reaction 30 mm Φ , 1 mm^t target for proton elastic scattering

- •Uniformity of density Adjustment of gas flow rate Use of para-H₂
- •Uniformity of thickness

Fasten the target with metal plate and magnet

•Future developments

Measurement of actual thickness and its uniformity Thinner target with larger aperture for proton elastic scattering