

PPAC and analog signal TX/RX over optical fiber

Design, construction and R&D: H. Kumagai and T. Ohnishi

Naoki Fukuda BigRIPS team, RIKEN Nishina Center

Layout of BigRIPS

Two-stage separator

Detectors and particle identification at BigRIPS

 $\Delta\text{E-TOF-B}\rho$ method with track reconstruction

 \rightarrow Improve Bp and TOF resolution

Parallel-Plate Avalanche Counter (PPAC) at BigRIPS

The details are given in H. Kumagai et al., NIM A470 (2001) 562

- Delay-line read-out type that uses the fast electron pulses.
 - \rightarrow High counting rate : ~ 10⁵ pps
 - charge-division read-out type: 2 x 10³ pps
 - \rightarrow Very wide dynamic range for nuclear charge Z
- Originally designed pre-amplifier
 - \rightarrow Large signal-to-noise ratio \rightarrow High detection efficiency
- Usage of C_3F_8 gas at at pressure of 10-30 Torr
 - The rise time of the signal is fast.
 - C_3F_8 is not flammable.

Delay-line PPAC

Exploded view of the delay-line PPAC (100 x 100 mm²)

PPACs used at BigRIPS

List of PPACs used in BigRIPS

Dimension	Туре	Focus
240 mm x 150 mm	Double	F3, F5, F7
150 mm x 150 mm	Double	F3, F7
240 mm x 150 mm	Single	F1, F2
150 mm x 150 mm	Single	F2
240 mm x 100 mm	Single	F4, F6

Position resolution with PPAC

Delayed-line Parallel plate avalanche counter *H. Kumagai et al., NIM A470 (2001) 562.* Position resolution : 1-1.5 mm (FWHM) in typical * Measurement with the fiber scint. (0.5mm)

The other evaluation reported by T. Oonishi 2008:

Residual distribution with respect to the tracking ray

A/Q spectra for Sn isotopes

134Sn⁵⁰⁺ 131Sn⁴⁹⁺ Only 1st order terms $\sigma = 1.3 \text{ mrad}$ 10 30 10^{3} 2000 20 1750 0.050% $\sigma_{A/Q}$ Counts 10^{2} 10 1500 Reconstructed F3a (mrad) 1250 0 10 1000 -10 750 500 1 -20 250 2.55 2.575 2.6 2.625 2.65 2.675 2.7 2.725 2.75 -30 0 -20 0 20 -5 5 A/Q134**Sn**50+ ¹³¹Sn⁴⁹⁺ Up to 3rd order terms $\sigma = 0.7 \text{ mrad}$ 30 3500 20 10^{3} 3000 $\sigma_{A/Q}$ 0.041% 10 2500 Counts 10^{2} 2000 0 1500 -10 10 1000 -20 500 1 -30 -20 20 0 5 -5 2.55 2.575 2.6 2.625 2.65 2.675 2.7 2.725 2.75 A/0 Measured F3a (mrad) F3a – F3a rec (mrad)

F3a deduced from track reconstruction

Typical resolution Bρ: 0.037%, TOF(F3-F7): 0.017%

Z dependence of tracking efficiency for low Z

⁴⁸Ca 345MeV/A + Be 20 mm A/Z=2 beam Bp01= 4.75Tm

PPAC C₃F₈ 30 Torr, HV 1640 V ¹²C(Z=6) 241MeV/A XY Track efficiency 85% X track efficiency: 92% (= Y track efficiency)

One plane efficiency: 79%

HV 1660V: 12 C effciency > 95 %

Tandem PPAC H. Kumagai

Large gain with low operation voltage \rightarrow small damage on spark

Low operation voltage \rightarrow Small damage at discharge

PPAC electrode:

• Al-evaporated mylar foil

 \rightarrow discharge behavior is not prefer to the PPAC operation

P1 S

Cathode : Al(thickness 555 Å)

Cu-evaporate mylar foil → good result

Cathode: Cu(thickness 301 Å)

Photo's and plots given by H. Kumagai

0.1

0.15

0.05

-0.05

-0.1

0

0.25

0.2

Analog signal TX/RX over optical fiber

•It is easy to add a long delay time.

100 m fiber cable

Time jitter

Measurement system: 10.7ps

Intrinsic jitter: σ 4.8 ps(σ)

500

0

1000

 V_i (mV)

1500

input

Property of fiber system

•Temperature dependence

- 0.43%/1°C (Constant temperature oven)
 - → Variation of laser diode's gain
- •Rate dependence
- AC coupling : base line shift at high rate NIM signal case: 50ps time shift at 1 MHz •Radiation damage
 - Using ⁷⁰Zn beam at RIKEN RILAC No effect after 10⁹ neutron irradiation

BigRIPS: \sim 100 channels are installed.

Optical fiber system +1.5µs Delay Box

