CNS Active Target Project

Shinsuke OTA <u>Center for Nuclear Study (CNS)</u>, the University of Tokyo

Two Types of "Active" Target

Beam inactive and active type

CNS Active Target Project

* 2009

- Collaboration begins
- Budget at the beginning of FY2009 in CNS (6M yen) + a part of Grant-in-aid for Scientific Research (-4M yen)
- Construction of prototype was done in November
- Test experiment in December, 2009 (CAT) and January and February in 2010 (GEM-MSTPC)
- * 2010
 - Two (a,p) exp. in 2009 (GEM-MSTPC)
 - ◆ Test exp. w/ 250MeV/u 56Fe @HIMAC (CAT)
- ✤ 2011...

Collaboration

Only Experimentalists CNS, Univ. of Tokyo

High Energy (GEM, Electronics)

SHARAQ (Physics, Electronics, DAQ)

Astrophysics (Physics, Construction) RIKEN Kyoto Univ. Univ. of Tsukuba Miyazaki Univ. (test experiment, potential users)

Collaborators

S. Ota, <u>H. Tokieda (CAT)</u>, R. Akimoto (Master Thesis), M. Dozono, H. Matsubara, Y. Kikuchi,
<u>T. Hashimoto (GEM-MSTPC)</u>, S. Michimasa, T. Gunji, H. Yamaguchi,
S. Kawase, T. Tsuji,
H. Hamagaki, T. Uesaka, S. Kubono (CNS),
T. Kawabata (Kyoto), H. Otsu, T. Isobe (Riken),
Y. Maeda (Miyazaki) A. Ozawa, H. Suzuki, D. Nagae, T. Morimoto, Y. Ito,
Y. Ishibashi, H. Oishi (Tsukuba)

GEM-MSTPC

w/ low-energy, up to 100 kHz beam (CRIB)

CAT

w/ high-energy, up to 1 MHz beam (SHARAQ, ZDS, RI-Ring ...)

Missing Mass Spectroscopy for (medium-) heavy RI

Structure of unstable nuclei

Inelastic scattering, Gamow-Teller, Transfer...

Giant resonances : incompressibility

Isoscalar/Isovector Monopole

* via Traditional reactions in inverse kinematics

♦ (a,a'), (d,d'), (d,²He), (³He,t), (d,p), (p,d), (³He,a),...

Spin(S)-Isospin(T) Selectivities

- Gamow-Teller
 - * $\Delta L=0, \Delta T=I, \Delta S=I$
- Fermi
 - * $\Delta L=0, \Delta T=I, \Delta S=0$
- Isoscalar monopole
 - * $\Delta L=0, \Delta T=0, \Delta S=0$

Incident beam energy: 100-300 MeV/u => RIBF

Spin-Isospin Selectivities

	$\Delta S=0$	$\Delta S=i$					
ΔΤ=0	(p,p'), (d,d'), (α,α')	(p,p') (d,d')					
ΔΤ=ι	(p,p') (p,n) (3He,t')	(p,p'), (p,n), (3He,t') (d,2He)					
Gamow-Teller: (d, 2He) Isoscalar monopole: (α, α')							
D2 and 4He gas							

Inverse kinematics

- ◆ 4He(⁶⁸Ni,⁶⁸Ni)⁴He
 @200MeV/u
- Recoil angle is large enough to measure
- Recoil energy is very small, less than I MeV for forward angle (<2 deg in c.m.) scattering

Recoil energy at forward scattering is very small

Range in He gas

Effect on Electric Field by Intense Heavy Ion Beam

Required beam intensity for 300 events / day

- Target : 3 x 10²⁰ particle/cm² (= 100 mm atm)
- Cross section: 0.1 mb (assumed)
- then, 100-kHz beam is needed
- ✤ => considerable space charge effect, delta ray, ...

Geometrical Design The region along beam path is masked.

Electron Amplifier (GEM)

CNS-type vender: scienergy

Readout Pad

Backgammon shape is chosen to optimize the resolutions and the number of readout channels

Electronics and DAQ software

- 3 x 6 x 2 pads (144ch) readout (for now)
- * preamp
- FADCs
- Trigger
- DAQ (babirl: Baba-san's talk)

Preamp. (RPA-210) REPIC

- RPA-210 (REPIC) (CXA3653Q chip)
 - ✤ 24ch -1.opC 1.opC
 - ♦ 0.8 V/pC
 - τ=80 ns
 - ✤ GEM-Preamp: 80cm flat cable

Typical signal (He+CO₂(5%))

FADCs

FADC	resolution sampling rate	cost	zero suppression	threshold	architecture	production	dead time	availability
COPPER II	12bit 65MHz (max)	1.3MJP Y/32ch	software	software	1cpu/ 32ch	KEK	readout	144 ch*
SIS3301	14bit 105 MHz (max)	1MJPY / 8ch	hardware	each ch	VME	SIS	no	40 ch
V1740	12bit 65MHz (max)	1MJPY /64ch	hardware	every 8ch	VME	CAEN	no	64 ch
GET		cheap?	hardware?	each ch?				

*most part is property of KEK

Event and Sampling Trigger

• a, d, p

field shaping wires

GEM

NaI

Array

Event trigger

delayed Beam AND NaI
 NaI
 Array

(for high momentum recoils)

- GEM (itself not pad)
- Sampling trigger (in SIS3301, V1740)
 - self-trigger is generated under or below threshold
 - clock synchronized => time-stamp track identification
- Gate for COPPER II is open when the previous event was finished

Test Experiment in Tsukuba (Dec. 2009)

- Position and angular resolution
 - Incident position
 - Iincident angle
 - ✤ Gas gain
- ✤ Alpha particle at 30 MeV
- ✤ 100-10kHz

R. Akimoto Master Thesis

He 30 MeV, -10^{2} Hz (-200 electrons/mm) He+CO₂(5%) 1 atm. Edrift 700 [V/cm] V_{drift} : 2 [cm/µs] Diffusion : 250 [µm/cm] V_{GEM} : 390-450 V (gain: 10²-10³)

Setup

Typical Events

Position resolutions

almost constant (within 100um) resolution => diffusion does not largely affect

50

Dependence on Gas Gain

Test Exp. in HIMAC (Dec. 2010)

- ✤ 56Fe 250MeV/u
- ✤ D2+CO2(5%) I atm
- double GEM
 - test of whole the system include NaI, trigger, electronics
 - Evaluate delta-ray effect w/ high-Z and high-intensity (I MHz) beam
 - light ion tracking w/ D2 gas

analysis in progress

Outlook

- D2 (+CO2) property w/ GEM, especially spark probability
- Optimize pad size/shape and upgrade electronics (V1740+optical readout?)
- Reaction measurement ⁵⁶Fe, ⁵⁶Ni(d,d' or 2p) w/ D2 (HIMAC)
 - Giant monopole and Gamow-Teller strength