CNS Active Target Project

Shinsuke OTA

Center for Nuclear Study (CNS), the University of Tokyo

Two Types of "Active" Target

Beam inactive and active type

CNS Active Target Project

- 2009
* Collaboration begins
* Budget at the beginning of FY2009 in CNS (6M yen) + a part of Grant-in-aid for Scientific Research (-4 M yen)
* Construction of prototype was done in November
* Test experiment in December, 2009 (CAT) and January and February in 2010 (GEMMSTPC)
- 2010
* Two (a,p) exp. in 2009 (GEM-MSTPC)
* Test exp. w/ $250 \mathrm{MeV} / \mathrm{u}{ }^{56} \mathrm{Fe} @ \mathrm{HIMAC}$ (CAT)
* 2OII...

Collaboration

Only Experimentalists
CNS, Univ. of Tokyo
High Energy
(GEM, Electronics)

SHARAQ

(Physics, Electronics, DAQ)

Astrophysics
(Physics, Construction)

Collaborators

S. Ota, H. Tokieda (CAT), R. Akimoto (Master Thesis), M. Dozono, H. Matsubara, Y. Kikuchi, T. Hashimoto (GEM-MSTPC), S. Michimasa, T. Gunji, H. Yamaguchi,
S. Kawase, T. Tsuji,
H. Hamagaki, T. Uesaka, S. Kubono (CNS),
T. Kawabata (Kyoto), H. Otsu, T. Isobe (Riken),
Y. Maeda (Miyazaki) A. Ozawa, H. Suzuki, D. Nagae, T.

Morimoto, Y. Ito,
Y. Ishibashi, H. Oishi (Tsukuba)

w/ low-energy, up to soo kHz beam
 (CRIB)

GEM - MSTPC Multiple Sampling and Tracking Proportional Chamber with Gas Electron Multiplier

Advantages and merits

1. The gas in the chamber serves as an active target.
$->$ The solid angle is 4π and detection efficiency is about 100%.
2. The MSTPC can measure 3D trajectories and dE/dx along their trajectrories. -> It serves a sufficient target thickness without losing any information.

The identification of the reaction is clearly performed.

CAT

w/ high-energy, up to MHz beam (SHARAQ, ZDS, RI-Ring ...)

Missing Mass Spectroscopy for (medium-) heavy RI

* Structure of unstable nuclei
* Inelastic scattering, Gamow-Teller, Transfer...
* Giant resonances : incompressibility
* Isoscalar/Isovector Monopole
- via Traditional reactions in inverse kinematics * ($\mathrm{a}, \mathrm{a}^{\prime}$), (d, $\left.\mathrm{d}^{\prime}\right),\left(\mathrm{d},{ }^{2} \mathrm{He}\right),(3 \mathrm{He}, \mathrm{t}),(\mathrm{d}, \mathrm{p}),(\mathrm{p}, \mathrm{d}),(3 \mathrm{He}, \mathrm{a}), \ldots$

Spin(S)-Isospin(T) Selectivities

* Gamow-Teller - $\Delta \mathrm{L}=\mathbf{0}, \Delta \mathrm{T}=\mathbf{I}, \Delta \mathrm{S}=\mathbf{I}$
* Fermi
* $\Delta \mathrm{L}=\mathbf{=}, \Delta T=\mathbf{I}, \Delta S=\mathbf{o}$
* Isoscalar monopole * $\Delta \mathbf{L}=\mathbf{0}, \Delta T=0, \Delta S=0$

Incident beam energy: 100-300 MeV/u => RIBF

Spin-Isospin Selectivities

	$\Delta \mathrm{S}=0$	$\Delta \mathrm{~S}=\mathrm{I}$
$\Delta \mathrm{T}=0$	$(\mathrm{p}, \mathrm{p}),(\mathrm{d}, \mathrm{d})$, $\left(\mathrm{a}, \mathrm{a}^{\prime}\right)$	$\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ $\left(\mathrm{d}, \mathrm{d}^{\prime}\right)$
$\Delta \mathrm{T}=\mathrm{I}$	$\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ (p, n) $\left(3 \mathrm{He}, \mathrm{t}^{2}\right)$	$(\mathrm{p}, \mathrm{p}),(\mathrm{p}, \mathrm{n}),(\mathrm{HHe,t})$ $\left(\mathrm{d},{ }^{2} \mathrm{He}\right)$

Gamow-Teller: (d, ${ }^{2} \mathbf{H e}$) Isoscalar monopole: (α, α^{\prime})

D2 and 4 He gas

Momentum Transfer

* If the reaction occurs in the vicinity of nuclear surface,

$$
\frac{d \sigma}{d \Omega} \sim\left|j_{l}(q R)\right|^{2}
$$

Inverse kinematics

* ${ }_{4} \mathrm{He}\left({ }^{68} \mathrm{Ni},{ }^{68} \mathrm{Ni}\right) 4 \mathrm{He}$ @ $200 \mathrm{MeV} / \mathrm{u}$
* Recoil angle is large enough to measure
* Recoil energy is very small, less than I MeV for forward angle (<2 deg in c.m.) scattering

Recoil energy at forward scattering is very small

Range in He gas

$\mathrm{\varrho}(4 \mathrm{He})=0.2 \mathrm{mg} / \mathrm{cm}^{3}$
* O.I MeV : 6.9 mm atm
* $0.5 \mathrm{MeV}: 17.8 \mathrm{~mm}$ atm
* I.o MeV : 28.3 mm atm

To measure forward angle scattering, an "active" target is needed

Effect on Electric Field by Intense Heavy Ion Beam

* Required beam intensity for 300 events / day
* Target : $3 \times 1 \mathrm{IO}^{20}$ particle/ cm^{2} ($=100 \mathrm{~mm}$ atm $)$
* Cross section: 0.1 mb (assumed)
* then, $\mathbf{1 0 0 -} \mathbf{k H z}$ beam is needed
* => considerable space charge effect, delta ray, ...

Concept of CAT

needs external monitor of beam-like particles but, space charge effect is small enough (by simulation).

Geometrical Design

The region along beam path is masked.

Electron Amplifier (GEM)

 CNS-typevender: scienergy

Property of $\mathrm{He}+\mathrm{CO}_{2}$ Gas

> Position = Charge ratio

Designed Resolutions
0.3 mm (RMS) -5 mrad (RMS)
Optimized: res. and \# of ch.

Readout Pad

Backgammon shape is chosen to optimize the resolutions and the number of readout channels

Electronics and DAQ software

- $3 \times 6 \times 2$ pads (144 ch) readout (for now)
* preamp
* FADCs
* Trigger
* DAQ (babirl: Baba-san's talk)

Preamp. (RPA-2Io) REPIC

* RPA-210 (REPIC) (CXA3653Q chip)
* 24ch -r.opC - 1.0 opC
* $0.8 \mathrm{~V} / \mathrm{pC}$
* $\tau=8 \mathrm{ons}$
* GEM-Preamp: 8ocm flat cable

Typical signal $\left(\mathrm{He}+\mathrm{CO}_{2}(5 \%)\right)$

FADCs

FADC	resolution sampling rate	cost	$\begin{gathered} \text { zero } \\ \text { suppression } \end{gathered}$	threshold	architecture	production	dead time	availability
COPPER II	i2bit ${ }_{5} \mathrm{MHz}$ (max)	$\begin{aligned} & \text { I.3MJP } \\ & \text { Y/32ch } \end{aligned}$	software	software	$\begin{aligned} & \text { icpu/ } \\ & 32 \mathrm{ch} \end{aligned}$	KEK	readout	144 ch*
SIS3301	$\begin{gathered} \text { I4bit } \\ \text { 15 } \mathrm{MHz} \\ \text { (max) } \end{gathered}$	IMJPY $18 \mathrm{ch}$	hardware	each ch	VME	SIS	no	40 ch
Vi740	$\begin{gathered} \text { I2bit } \\ 65 \mathrm{MHz} \\ (\max) \end{gathered}$	IMJPY 164ch	hardware	every 8ch	VME	CAEN	no	64 ch
GET		cheap?	hardware?	each ch?				

*most part is property of KEK

Event and Sampling Trigger

* Event trigger
* delayed Beam AND NaI
(for high momentum recoils)
* GEM (itself not pad)

* Sampling trigger (in SIS3301, Vi740)
* self-trigger is generated under or below threshold
* clock synchronized => time-stamp track identification
* Gate for COPPER II is open when the previous event was finished

Test Experiment in Tsukuba (Dec. 2009)

* Position and angular resolution
* Incident position
* Incident angle
* Gas gain
* Alpha particle at 30 MeV
* $100-\mathrm{IokHz}$
R. Akimoto Master Thesis

$\mathrm{He} 30 \mathrm{MeV},-\mathrm{IO}^{2} \mathrm{~Hz}(-200$
electrons $/ \mathrm{mm})$
Beam
$\mathrm{He}+\mathrm{CO}_{2}(5 \%)_{\mathrm{I}}^{\mathrm{Iatm} .}$
$\mathrm{E}_{\text {drift }} 700[\mathrm{~V} / \mathrm{cm}]$
Vdrift : $2[\mathrm{~cm} / \mu \mathrm{s}]$
Diffusion : $250[\mu \mathrm{~m} / \mathrm{cm}]$
V GEM: $_{3} 390-450 \mathrm{~V}\left(\mathrm{gain}: 1 \mathrm{IO}^{2}-\mathrm{IO} 3\right)$

Setup

Typical Events

Position resolutions

Perpendicular to drift direction
 less than 7ooum from charge division

Drift direction

less than roo um from time projection

Effect of diffusion

dependency on the drift length

Perpendicular to
drift direction

Drift direction

almost constant (within rooum) resolution => diffusion does not largely affect

Dependence on Gas Gain

gas gain was varied by changing high voltage supply to GEM As expected, larger gain (up to io3), better resolution.

Energy resolution

energy resolution - 10\% (σ) for one row 3.3% (σ) for total (6) rows

Test Exp. in HIMAC (Dec. 2010)

* $56 \mathrm{Fe} 250 \mathrm{MeV} / \mathrm{u}$
* $\mathrm{D}_{2}+\mathrm{CO}_{2}(5 \%)$ I atm
* double GEM
* test of whole the system include NaI , trigger, electronics
* Evaluate delta-ray effect w/ high- Z and high-intensity (I MHz) beam
* light ion tracking w/ D2 gas

Outlook

* $\mathrm{D}_{2}\left(+\mathrm{CO}_{2}\right)$ property w/ GEM, especially spark probability
* Optimize pad size/shape and upgrade electronics (VI740+optical readout?)
* Reaction measurement ${ }^{56} \mathrm{Fe},{ }^{56} \mathrm{Ni}(\mathrm{d}, \mathrm{d}$ ' or 2 p$) \mathrm{w} / \mathrm{D} 2$ (HIMAC)
* Giant monopole and Gamow-Teller strength

