Inclucive Jet Analysis

Tsukuba University Takuya Kumaoka

Kumaoka

Study plan

- Data Jet QA (LHC18q/r(pass3): Pb-Pb 5.02 GeV)
- MC Jet QA (LHC19f4(pass1), LHC20g4(pass3))
- Estimate background $\rho(p_T)$
- Confirm the raw jet behavior
- (pT distribution, Rcp, R dependence, jet area, leading pT cut dependency)
- Embedding process ← Now
- Unfolding ← Next (on going)
- Estimate Systematic Uncertainty

Remain problem: background estimation (differencial of cell threshold and seed threshold), pp (LHC17) tracking efficiency, multiplicity cut (LHC20g4), and etc...

Kumaoka

Current status of the embedding process

Embedding Condition

<u>MB</u> of LHC<u>18r</u> (Pb-Pb 5.02 GeV)

- Geometrical Matching (Matchig R = 0.3)
- Track cut: 0.15 GeV
- pT Bias Jet track: 5 GeV
- Max track cut: 100 GeV
- Jet pT cut: 1 GeV
- Z vertex cut: 10 mm

$p_{\rm T}$ hard bin merging with $p_{\rm T}$ hard scaling

I get the all pT hard bin charged jet results of only three runs of MB of LHC18r. And I could smoothly merge these files by calculating p_{T} hard scaling parameter.

Kumaoka

LHC15o Comparison

Jet Energy Scale(JES) shift

And the right plot also does not show the centrality dependence.

Kumaoka

Jet Energy Scale(JES) shift

Kumaoka

Left plot looks like the preceding result on the other hand w/o pT-hard scaling. However, a scaled plot (right) is quite different from the preceding study.

Jet Energy Scale(JES) shift

1. These plot's shapes are similar.

- 2. On the other hand, I could not understand why the left plot over than 1 even though the y axis shows plobability.
- 3. The plot of pt range 20-30 (black one) in the left plot has a strange peak.

Kumaoka

Probability density

2.2

1.4

1.2

0.8

0.6

0.4

0.2

-0.8

Jet Energy Resolution (JER)

The JER plot of this study is far from the preceding study. -> I still not understand the reason.

Kumaoka

Kinematic efficiency

In high pT region, the efficiency seems resonable. On the other hand, in low pT region, LHC18r result is lower than LHC15o results.

Kumaoka

Response matrix

Preceding Study (2015)

This Study (LHC18r)

11/20

The diagonal components of LHC18r RM spreads than LHC15o one.

Refolding results

Preceding Study (2015)

Preceding Study (LHC18r)

12 / 20

The measured resutls look slimilar. However, the LHC18r refold results not stable.

Kumaoka

Different Centrality Comparison

Response Matrix (rebinned)

Centrality 0-10 %

Centrality 70-90 %

The peripheral RM is shaper than central RM

Kumaoka

2021/06/08 PWGJE

p^{truth} (GeV/c) 007 007

250

150

100

50

0

50

100

150

 $p_{\mathrm{T,corr}}^{\mathrm{200}}$ (GeV/c)

Response Matrix (fine binning)

Centrality 0-10 %

Centrality 70-90 %

Kumaoka

Coefficient Matrix

Centrality 0-10 %

Centrality 70-90 %

The peripheral RM is shaper than central RM

Kumaoka

Kinematic efficiency

Centrality 0-10 %

Centrality 70-90 %

Peripehral kinematic efficiency is higher than the central one. -> This result is reasonable

Kumaoka

2021/06/08 PWGJE

17 / 20

Unfolding results

Not found a large difference between these plots. But the peripheral result lack statistic in high pT region.

Kumaoka

Kumaoka

Questions

- Would you feel these results are reasonable?
- Why are you use pT hard scaling.
- Should we scale JESshift plot?
- Why does the unfold results not stable?
- How should we select the iteration times (and what is iteration parameter)?
- Why does the SVD package not success?

Error in <TDecompSVD::Diagonalize>: no convergence after 309 steps

