

International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility (J-PARC HEF-ex WS), 7-9 July 2021, online

Hadron Experimental Facility extension (HEF-ex) Project

Contents

- Introduction of the Hadron Experimental Facility (HEF)
 - Goals of particle & nuclear physics
 - Recent achievements & present status
- Key issues and strategy for the physics programs at HEF in the future
 - Strangeness nuclear physics / Hadron physics / Flavor physics
- Global situation
- Timeline of the project
- Summary

Introduction of the Hadron Experimental Facility

4

Origin & Evolution of Matter

Matter in Extreme Conditions

hyperon puzzle in neutron stars

flavor symmetry breaking hadron interaction formation of a nucleus Hypernuclei spectroscopy YN scattering

Matter Evolution

fundamental structure of matter

chiral symmetry breaking quark interaction Hadron spectroscopy Meson in nuclei

Birth of Matter matter dominated universe CP symmetry violation weak interaction

Kaon decays

Origin & Evolution of Matter

Strangeness Nuclear Physics

hyperon puzzle in neutron stars

flavor symmetry breaking hadron interaction formation of a nucleus Hypernuclei spectroscopy YN scattering

Hadron Physics

fundamental structure of matter

chiral symmetry breaking quark interaction Hadron spectroscopy Meson in nuclei

Flavor Physics matter dominated universe CP symmetry violation weak interaction

Kaon decays

Present Hadron Experimental Facility (HEF)

30 GeV proton beam
 65kW (7x10¹³ ppp, 5.2s)

 [as of 2021, June]

will be ready in 2023

COMET

 μ^{-} beam

μ-e conversion

Outputs from the HEF

Since the first beam delivery in 2009, fruitful results have been obtained

Recent Achievements: Strangeness

- S=-1 nuclei: large charge symmetry breaking (E13)
- S=-2 nuclei: existence of Ξ bound state (E07)
- Σp scattering: strong repulsion in Σp (E40)

S=-2 Physics with S-2S Spectrometer

• <u>The flagship experiment we have been</u> <u>waiting for at J-PARC</u>

- The first Ξ -hypernuclei spectroscopy
 - Ξ potential both Re(V_{Ξ}) and Im(V_{Ξ})
 - isospin dependence ($\propto 1/A$)
 - ΞN - $\Lambda\Lambda$ conversion
- Systematic measurements will be strongly promoted from now on

Recent Achievements: Hadron

- Kaonic atoms: precise measurement of kaonic-³He/⁴He atoms (E62)
- Λ (1405): line shape of K⁻N $\rightarrow \pi\Sigma$ channel (E31)
- Kaonic nuclei: observation of "K⁻pp" state (E15/E27)

Present Status: Hadron

Recent Achievements: Flavor Physics

 $N_{observed}$ (=3) is statistically consistent with N_{BG} (=1.22±0.26).

Present Status: Flavor Physics

KOTO: $K^0_L o \pi^0 u \overline{ u}$

•					• • • • • • • • • • • • • • • •
W/III	continue d	lata taking '	roward r	ne sivi	sensitivitv

Background Table					
Buenground lubic	Number of events				
$K_L \rightarrow 3\pi^0$	0.01 ± 0.01				
$K_L \rightarrow 2\gamma$ (beam halo)	$0.26\pm0.07^{\rm a}$				
Other K_L decays	0.005 ± 0.005				
K^{\pm}	$0.87\pm0.25^{\mathrm{a}}$				
Hadron cluster	0.017 ± 0.002				
$\mathrm{CV}\ \eta$	0.03 ± 0.01				
Upstream π^0	0.03 ± 0.03				
	1.22 ± 0.26				
$K^{\pm} ightarrow \pi^0 e^{\pm} u$ is the most serious contributo					

Upstream Charged Veto (UCV)

Key Issues and Strategy for the physics programs at HEF in the future

17

Origin & Evolution of Matter

Matter in Extreme Conditions

hyperon puzzle in neutron stars

flavor symmetry breaking hadron interaction formation of a nucleus Hypernuclei spectroscopy YN scattering

Matter Evolution

fundamental structure of matter

chiral symmetry breaking quark interaction Hadron spectroscopy Meson in nuclei

Birth of Matter matter dominated universe CP symmetry violation weak interaction

Kaon decays

Neutron Star Matter and YN/YNN Interactions

How to attack neutron star?

Macroscopic approach

- Astronomical observation
- **Gravitational-wave** observation
 - Mass and radius
- Theoretical models

Give constraints

in macroscale

of 10⁴ m

• Structure, evolution, ...

Relativistic Simulation ud LQCD **Equation Of State** Both two approaches are essential

11

12

R [km

15

Microscopic approach

- **Experimental nuclear physics**
 - Density dependent BB/BBB interactions (including Y)
- **Theoretical models**
 - Realistic interaction models based on experimental data & QCD

Provide answers

in microscale

of 10⁻¹⁵ m

20

We Have Provided a lot of Information on NS Matter

• Λ potential \rightarrow U $_{\Lambda}$ = -30 MeV, attractive

- From Λ -hypernuclei
- Start point of "hyperon puzzle"

• Σ potential \rightarrow U_{Σ} ~ +30 MeV, repulsive

- From Σ production in nuclei / Σ p scattering
- Exp. method of YN scattering established

• Ξ potential \rightarrow U_{Ξ} = ??, attractive

- From emulsion data
- Just beginning to understand

$\bullet\, {\rm New}$ insight of the $\Lambda {\rm N}{\operatorname{-}}\Sigma {\rm N}$ conversion

- From charge symmetry breaking of $\Lambda\text{-hypernuclei}$
- Theoretical models should be reconsidered

Theoretical improvement

- High-density matter EOS has been improved by nuclear theories
- Effective Field Theories (EFT) will be improved based on experimental data from J-PARC
- YN/YY/EN interactions have been calculated by LQCD

We need precise data more & more

• Kaon condensation??

• From observation of the deeply bound "K⁻pp" state

Elucidation of Neutron Star Matter from Nuclear Physics

Origin & Evolution of Matter

Matter in Extreme Conditions

hyperon puzzle in neutron stars

flavor symmetry breaking hadron interaction formation of a nucleus Hypernuclei spectroscopy YN scattering

Matter Evolution

fundamental structure of matter

chiral symmetry breaking quark interaction Hadron spectroscopy Meson in nuclei

Birth of Matter matter dominated universe

CP symmetry violation weak interaction

Kaon decays

Hadron Physics @ J-PARC

- **Explore low-E (non-pert.) QCD Confinement of Hadron**
 - **Chiral Symmetry Breaking**

Expand

baryon

in *s*-sector

H-dibaryon

 Θ^+ penta-quark baryon

π 20/K10@HEF-ex

Meson properties in nuclei

- Investigation of meson properties has been proceeded at present HEF, using high-intensity kaon beam physics to
 - $K^{bar}N \pi\Sigma \Lambda(1405)$
 - Kaonic atoms/nuclei
 - (φ meson in nuclei, now launched) exotic hadron searches

Proton beam with mass modified

- Still no clear answer to "How quarks build baryons?"
- **Dynamics of non-trivial QCD vacuum** in baryon structure is a key
- comprehensive and systematic studies
 - of "detailed" baryon spectroscopy

strange and charm baryons qq

24

Baryon Spectroscopy

Importance of Baryon Spectroscopy

Baryon Spectroscopy @ Extended HEF

structure

baryon

2.

Origin & Evolution of Matter

Matter in Extreme Conditions

hyperon puzzle in neutron stars

flavor symmetry breaking hadron interaction formation of a nucleus Hypernuclei spectroscopy YN scattering

Matter Evolution

fundamental structure of matter

chiral symmetry breaking quark interaction Hadron spectroscopy Meson in nuclei

Birth of Matter

matter dominated universe

CP symmetry violation weak interaction

Kaon decays

Toward New Physics: Flavor Physics

- So far, no clear evidence of new physics beyond the SM from direct searches
- Flavor physics in intensity frontier plays an important role more and more Key Issue

Toward New Physics: Flavor Physics

- So far, no evidence of new physics beyond the SM from direct searches
- Flavor physics in intensity frontier plays important role more and more

We attack the new physics via various approaches at J-PARC

Goals of the New Project

Strangeness Nuclear Physics

hyperon puzzle in neutron stars

Flo
 ha
 fol
 from nuclear physics, by
 solving the hyperon puzzle

Hadron Physics

fundamental structure of matter

Reveal baryon structure built by quarks, through spectroscopic study of *s*- and *c*-baryons

Flavor Physics matter dominated univers Discover new physics beyond the SM, by improving the sensitivities of rare kaon decay searches

"Extended" Hadron Experimental Facility is Essential

A-hypernuclei Spectroscopy Strangeness Physics B Inter

	HIHR	JLab	Mainz				
Reaction	(π^+, K^+)	(e,e'K+)	Decay π				
Achievable Precision (keV)	<mark>()</mark> <100	© <100	© <100				
Applicable hypernuclei	O All Z	O Light – Medium Heavy (Larger Z, higher BG)	X Only Ground states of light hypernuclei				
Availability of Neutron rich HY	OCX ^A _Λ (Z-2)	Ο ^A _Λ (Z-1)	Fragmentation only 2body-decay				
Flexibility of beamtime	O Permanently Installed Beamline & Spectrometer	X Large-scale Installation (several months)	O Kaon Spectrometer Installation (a few weeks)				
Absolute Energy Calibration	$\begin{array}{c} \Delta \\ {}^{12}_{\Lambda}C \\ p(\pi^-, K^+)\Sigma^- \\ Decay \ \pi \end{array}$	$\bigotimes_{p(e,e'K^+)\Lambda,\Sigma^0}$	O Elastic <i>e</i> scattering				

Systematic measurement can be performed @ HIHR

- 2-/3-body interactions via femtoscopy
- Huge data-set in Run3 (2022-24) ~
- Sensitive to S-wave (lower-mom. region)

s/c-baryon Spectroscopy

- High capabilities of hadron spectroscopy in *c* and *b*-sectors, via inv. mass reconst.
 - $\succ \Omega^*$ would be difficult to identify in high- π -multiplicity environment

Flavor Physics $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$

- NA62@CERN: $K^+
 ightarrow \pi^+ \nu \overline{
 u}$ has been investigated
 - Run1: 2016-18, Run2: 2021-24 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11} \text{ at } 68\% \text{ CL}$
- KLEVER@CERN: $K_L^0
 ightarrow \pi^0 \nu \overline{
 u}$ search is planned as the next of NA62
 - aiming to start in LHC Run 4 (2027-)

Timeline with the current programs

2022 (KEK Project Implementation Plan 2022)

	FY2021	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030
MR	Upgrade Magnet	e of PS	construction parallel to beam operation in the first 3 years, beam-suspension in the next 2.5 years							
	The Extension Project of the HEF (6 years)									
HD		Cur	rent Progra towar	ms with SX ds 100kW	Power	Hall	Extension		xpanded with mo	Programs pre BLs
COMET	Constru	iction		COMET1			COME	T2 Constru	ction	COMET2

• We would like to start the project from FY2023

4 years operation before beam suspension (except for COMET)
 3 years operation for COMET (Beamline completion in FY2022)

Urgency of the Project

To promote particle and nuclear physics together with world's frontier facilities, contributions from the J-PARC HEF are essential

Around after 2027, PANDA, HL-LHC, and KLEVER will start their operations → To keep leading position in the field, early realization of the project is essential

Summary

•Open new physics that cannot be implemented at the existing facility

- Elucidate neutron star matter from nuclear physics, by solving the hyperon puzzle
- Reveal baryon structure built by quarks, through spectroscopic study of strange and charm baryons
- Discover new physics beyond the SM, by improving the sensitivities of rare kaon decay searches

●Improve experiment-execution and beam-utilization efficiencies by realizing simultaneous execution of multiple experiments (3→6 experiments).

➢Increase outputs

Contribute to human resource development, i.e., increase the number of Ph.D recipients

Extend Physics Capability

Thank you very much!