8th July 2021 International WS on the Extension Project for the J-PARC Hadron Experimental Facility

Supra-precision (π^+, K^+) spectroscopy (S πK) of Λ hypernuclei at the High Intensity High Resolution beamline

HIHR Hypernuclear Collaboration Satoshi N. Nakamura (Tohoku Univ.)

Nuclear Physics : Study of quantum many-body system governed by the strong interaction

Baryon

(Hyper) Nucleus

 10^{-15} m

Nucleon-nucleon (baryon-baryon) interaction Many-body problems

Nuclear Physics : Study of quantum many-body system governed by the strong interaction (Hyper) **Neutron Star** Baryon Nucleus

 $10^{-15} \,\mathrm{m}$

 $10^4 \,\mathrm{m}$

Terrestrial experiments

New information from astronomical observation

Understand these systems in the same framework.

New Astronomical Observations of NS

Calça

ESO/L

CC4.

PHOTO LIBRARY

Neutron star and Strange hadronic matter

Sym. Nucl. Matter : Limit for size (due to Coulomb force) Asym. Nucl. Matter : Neutron Stars, Strange Hadronic Matter

Hyperon Puzzle

Based on our knowledge on Baryonic Force:

Hyperon naturally appear at high density ($\rho=2\sim3\rho_0$)

AFDMC by Lonardoni et al. PRL114 (2015) 092301, updated (2016)

ESCo8c + 3B/4B RF : G-Matrix Calc. by Yamamoto et al., PRC 90 (2014) 045805. Variational Meth. + AV18+UIX by Togashi et al., PRC 93 (2016) 035808

3BF recovers stiffness

D.Gerstung et al., Eur. Phys. J. A (2020) 56:175.

ChEFT(NLO: Saturation Decuplet)+Brueckner-Bethe-Goldstone eq.+ Λ N- Σ N, Λ NN- Σ NN coupled channels

$\Lambda Single Particle Energies of \Lambda Hypernuclei by Various Calculations$

ChEFT

J.Haidenbauer, I.Vidana, EPJA (2020) 56:55.

Measurement of B_{Λ} of Λ hypernuclei

Spectroscopic study of Λ hypernuclei with the (π^+, K^+) reaction

High Resolution, High Intensity (π^+, K^+) spectroscopy

¹²C, ^{6,7}Li, ⁹Be, ^{10,11}B, ²⁸Si, ⁴⁰Ca, ⁵¹V, ⁸⁹Y, ¹³⁹La, ²⁰⁸Pb

KEK-PS E369 with SKS

Expected at HIHR beamline

60 days \times 3M π /spill @ KEK K6 $\Delta E \sim 2.3 MeV(FWHM)$

60 days × 200M π /spill (a) HIHR $\Delta E \sim 0.4$ MeV(FWHM)

HIHR

- High-Intensity High-Resolution Beamline for High Precision (π⁺, K⁺) Spectroscopy
 - Dispersion matching; NO limit of beam intensity
 - Well established technique for GR, SHARAQ,

but first challenge for GeV meson beams

HIHR: ~2 x 10⁸ pions/pulse, ∆p/p ~ 1/10000

HR beamline (P_{max} = 2 GeV/*c*) + High Res. Kaon spectrometer

HIHR

- High-Intensity High-Resolution Beamline for High Precision (π⁺, K⁺) Spectroscopy
 - Dispersion matching; NO limit of beam intensity
 - Well established technique for GR, SHARAQ,

but first challenge for GeV meson beams

Present beamlines: ~10⁶ pions/pulse, $\Delta p/p \sim 1/1000$

HIHR: ~2 x 10⁸ pions/pulse, ∆p/p ~ 1/10000

Momentum dispersion match

Momentum Matching Parameters and Conditions $\begin{pmatrix} x_f \\ \theta_f \\ \delta_f \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{16} \\ s_{21} & s_{22} & s_{26} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} T & 0 & 0 \\ 0 & \theta/\theta_1 + 1 & 0 \\ 0 & 0 & (K\theta + DQ)/\delta_0 + C \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{16} \\ b_{21} & b_{22} & b_{26} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ \theta_0 \\ \delta_0 \end{pmatrix}$ $T:TGT \ cosine, \ Q: Excitation \ Energy,$ θ : Scattering Angle, $\theta_1 = b_{21}x_0 + b_{22}\theta_0 + \delta_0b_{26}$ $K: (\partial p_{scat} / \partial \theta)(1 / p_{scat})$ Scattering Angle Correction Coefficient $C: (\partial p_{scat} / \partial p_{beam})(p_{beam} / p_{scat}) \dots$ Incident Momentum Correction Coefficient $D: (\partial p_{scat} / \partial Q)(1 / p_{scat})$ Excitation Energy Correction Coefficient Momentum Matching Condition : $x_{f} = (\partial x_{f} / \partial x_{0})x_{0} + (\partial x_{f} / \partial \theta_{0})\theta_{0} + (\partial x_{f} / \partial \theta_{0})\theta_{0} + (\partial x_{f} / \partial \theta_{0})\theta_{0} + s_{16} * DQ$ $\partial x_f / \partial x_0 = s_{11} * b_{11} * T + s_{12} * b_{21}$: total magnification \rightarrow minimize, $\partial x_f / \partial \theta_0 = s_{11} * b_{12} * T + s_{12} * b_{22}$: point - to - point focus $\rightarrow 0$, $\partial x_f / \partial \delta_0 = s_{11} * b_{16} * T + s_{12} * b_{26} + s_{16} * C$: momentum matching $\rightarrow 0$, $\partial x_f / \partial \theta = s_{12} + s_{16} K$: kinematical correction (finite scatt. angle) $\rightarrow 0$ $s_{16} * DQ$: a position shift by the excitation energy

Resolution study (TRANSPORT)

Expected Resolution based on optical design

	HIHR @J-PARC Ex. 1.1GeV/ <i>c</i> π ⁺
Reaction	$^{12}\mathrm{C}(\pi^+,K^+)^{12}_{\Lambda}\mathrm{C}$
Beam Momentum Resolution	o.25 MeV/c
Scattered Particle Momentum Resolution	o.37 MeV/c
Mass Resolution (Beam Optics)	o.32 MeV (Mom. Dis. Match)
Straggling in Target	0.09 MeV (100 mg/cm²)
Total Energy Resolution	o.33 MeV (FWHM)

Resolution study (GEANT₄)

Beam momentum spread -> Position spread on target

Resolution study (GEANT4)

Expected spectra

Yield study with GEANT4

Expected Yield of Hypernulclei

	HIHR@J-PARC Ex. 1.1GeV/ <i>c</i> π ⁺
Reaction	$^{12}\mathrm{C}(\pi^+,K^+)^{12}_{\Lambda}\mathrm{C}$
Beam on target (/ sec)	3.85 $ imes$ 10^7 π^+ (200 M/spill, 50kW)
Target Thick (mg/cm²)	400 (1.8 g/cm ³ x 0.22 cm)
Solid Angle for K ⁺ (msr)	>20
Kaon Survival Ratio	0.12 (11.4 m for QSQDMD)
Cross section (µb/sr)	8.1
Expected Yield (/h)	53.1

Beamtime requirement

Table 6-I: Summary of requesting beamtime for 50 kW proton beam power. Differential cross sections at $\theta_K \sim 0$ were estimated by using data of prior (π^+, K^+) experiments [PIL91, HAS94, HAS96, HOT01, HAS06].

	Assumed g.s. Cross Section (µb/sr)	Target thickness (mg/cm²)	Expected Yield(/h)	Requested number of events for g.s.	Beam Time (h)
¹² _Λ C	8.1	100	13.3	1000	79
¹² _Λ C	8.1	200	26.6	2000	79
¹² ΛC	8.1	400	53.1	2000	39
$^{6}_{\Lambda}$ Li	1.9	200	12.7	100	8
$^{7}_{\Lambda}$ Li	1.9	200	10.9	100	10
⁹ _Λ Be	0.2	200	1.1	100	98
¹⁰ _Λ B	0.9	200	3.5	100	30
$^{11}_{\Lambda}\text{B}$	0.9	200	3.2	100	33
²⁸ ΛSi	0.5	400	1.4	100	75
⁴⁰ _л Са	0.5	400	0.94	100	112
${}^{51}_{\Lambda}$ V	1.2	400	1.8	100	59
⁸⁹ _A Y	0.6	400	0.53	100	199
Sub total (light- mid heavy)					724 (30 days)

GOAL : Resolution < 400 keV (FWHM)

Peak determination precision 40 keV (σ ~ 17 keV)

¹³⁹ La	0.3	200	0.085	20	236
¹³⁹ _A La	0.3	400	0.17	80	471
²⁰⁸ _Λ Pb	0.3	200	0.057	20	352
²⁰⁸ _A Pb	0.3	400	0.11	80	705
Sub total (heavy)					1764 (73 days)
Grand Total					2488 (104 days)

73 days for heavy targets

104 days for total

30 days for light targets

International competition for High-resolution (π^+, K^+) spectroscopy at HIHR Jefferson Lab and Mainz are possible competitors.

Highly competitive but simultaneously complementary

	HIHR	JLab	Mainz
Reaction	$(\pmb{\pi^+},\pmb{K^+})$	(e,e′K⁺)	Decay π
Achievable Precision (keV)	<mark>©</mark> <100	© <100	© <100
Applicable hypernuclei	O All Z	C Light – Medium Heavy (Larger Z, higher BG)	× Only Ground states of light hypernuclei
Flexibility of beamtime	© Standing Beamline with dedicated spectrometer Hypernuclear Factory	X Large-scale Installation (several months)	C Kaon Spectrometer Installation (a few weeks)
Absolute Energy Calibration	$egin{array}{c} & & \ & & \ & \ & \ & \ & \ & \ & \ & $	\oslash $p(e,e'K^+)\Lambda,\Sigma^0$	C Elastic <i>e</i> scattering

Schedule

Summary

Physics Motivation

Spectroscopy of Λ hypernuclei with (π^+ , K^+) reaction at HIHR beamline

Study of ANN 3-body force

Key information to solve the Hyperon Puzzle

Systematic Study of CSB for various hypernuclei (complimentary to (e,e'K⁺)) Provide standard data of Λ hypernuclei for decades

Necessary Beam

1.1 GeV/c π^+ beam, 2.0 × 10⁸ / spill (50kW, Pt 60mm, extraction angle 3degrees)

Beamtime request

 30 days run for ¹²C, ^{6,7}Li, ⁹Be, ^{10,11}B, ²⁸Si, ⁴⁰Ca, ⁵¹V, ⁸⁹Y
 Total 104 days

 73 days run for ¹³⁹La, ²⁰⁸Pb
 Total 104 days

HIHR will be a unique hypernuclear factory which provides various high precision data to construct a reliable baryonic interaction model and to deepen our understanding of quantum many-body systems.