Gamma-ray spectroscopy of A hypernuclei at the HIHR/K1.1 beamlines

2021/7/8 T.O. Yamamoto JAEA ASRC (Japan)

Contents

- Present status of gamma-ray spectroscopy of A hypernuclei
- Prospect of future measurement
 - A=3 hypernuclei

study of ΛN - ΣN mixing effect

s~p-shell neutron rich hypernuclei

study of charge symmetry breaking effect $+\Lambda N \cdot \Lambda \Sigma$ mixing

Medium-hevy hypernuclei

study of density dependence of ΛN interaction

Summary

Gamma-ray spectroscopy to study nuclear structure

What's we can obtain from gamma-ray spectroscopy

- ◆ Transition energy and coincidence (or branching) relationship
 → Level structure
 - Transition rate
 - → Lifetimes, electric/magnetic moment, ...
 - Angular correlations and liner polarizations
 - \rightarrow Spin, Parity

Precise gamma-ray spectroscopy have a important roll to study nucleus

Complementary to

reaction spectroscopy

- O Good energy resolution!
- **O** Prove without large perturbations in the nuclear medium.
- **O** Gamma-rays penetrate target material and reach detector.
- × Can not apply for un-bound (or short lifetime) state only low-lying (or long lifetime) state will emit gamma-ray
- × No absolute mass information

energy spacing between nuclear state can be measured

Nuclear structure and gamma-ray spectroscopy

Level scheme of single particle potential

Existence of magic number

Large LS force \Rightarrow "Shell structure"

Studied (at near closed shell):

- Excitation and separation energy
- (Single) particle/hole state
- Spin and parity

We introduce strangeness to understand nucleon force as baryon-baryon interaction

LS force in ΛN interaction ($\leftrightarrow NN$ case)

- Asymmetric LS force (not exist in NN case)
- Forbidden ho meson exchange (in meson exchange picture)

Hypernuclear structure and AN interaction

Level scheme of *p*-shell hypernuclei

determined by Hyperball project @KEK, BNL

- Spin dependent-term in s-shell, sd-shell
- Charge symmetry breaking (CSB) effect in A=4 mirror hypernuclei

Study of spin-spin term in s-shell, sd-shell hypernuclei (J-PARC E13)

p-shell data [KEK, BNL]

+ s-shell, sd-shell data [J-PARC E13]

Study of spin-spin term in s-shell, sd-shell hypernuclei (J-PARC E13)

Contents

Present status of gamma-ray spectroscopy of A hypernuclei

Prospect of future measurement

A=3 hypernuclei

γ-ray spectroscopy exp.@ K1.1 beamline

study of ΛN - ΣN mixing effect

s~p-shell neutron rich hypernuclei

study of charge symmetry breaking effect $+\Lambda N \cdot \Lambda \Sigma$ mixing

medium~hevy hypernuclei

study of density dependence of ΛN interaction

Summary

Motivation of future measurements

- $\Lambda N-\Sigma N$ mixing effect (coupling)
 - Significant effect on hypernuclear structure
 - Role of Λ in neutron star?
 - Large effect in A=3 system? (as expected?)
 -> ³_ΛH γ-ray spectroscopy
 - Relationship with CSB effect?

Radial dependence of

- How become smaller effect in A>4 hypernuclei? (as expected?)
 -> γ-ray spectroscopy of ⁴_ΛH and *p*-shell neutron rich hypernucalei
- Density dependence of ΛN interaction The second seco

Three body force? 'eutron star?

spin-dependent ΛN interaction (>sd-shell)

-> High resolution reaction spectroscopy @HIHR

+ γ-ray spectroscopy for medium-heavy hypernuclei

Future gamma-ray spectroscopy

A=3 hypernuclei Study of ΛΝ-ΣΝ mixing effect

Experimental setup @K1.1

Experimental setup

Hyperball-J new Ge detector array

Future gamma-ray spectroscopy

s~p-shell neutron rich hypernuclei Study of CSB effect

+ Study of ΛN-ΣN mixing effect

CSB effect in A=4 mirror hypernuclei

γ-ray spectroscopy of neutron rich hypernuclei

Other neutron rich hypernuclei can be accessed

 → Help for study of ΛΣ mxing effect which will strongly appear in neutron rich hypernuclei

γ-ray spectroscopy of neutron rich hypernuclei

Measurement of neutron rich hypernuclei

Future gamma-ray spectroscopy Medium-heavy hypernuclei Study of density dependent ΛN int.

Reaction and γ-ray spectroscopy of medium-heavy hypernuclei

High resolution reaction spectroscopy at HIHR [BE accuracy 0.1 MeV]

Study of density dependence of ΛN interaction

Gamma-ray data may help

- spin splitting measurement
 - -> reaction data to spin-averaged BE data
- E1 γ transition energy
 - -> "another barometer"

for density dependence

Study of density dependence from p_{Λ} -s_{Λ} energy spacing measurement

gamma-ray spectroscopy of medium-heavy hypernuclei

 $\begin{array}{l} {}^{28}{}_{\Lambda}\text{Si}, {}^{40}{}_{\Lambda}\text{Ca}, {}^{51}{}_{\Lambda}\text{V}, {}^{89}{}_{\Lambda}\text{Y}, {}^{139}{}_{\Lambda}\text{La}, {}^{208}{}_{\Lambda}\text{Pb} \\ (\text{K}^{\text{-}},\pi^{\text{-}}) 1.1 \text{ GeV/c} @\text{K1.1 line} \\ {}^{14} \\ \text{Notivation:} \end{array}$

• spin splitting (for both s_{Λ} - and p_{Λ} - state)

- Support reaction spectroscopy data
 - -> Density dependence of AN interaction
- Radial dependence of

spin-dependent of ΛN interaction

- Study of Nuclear LS splitting

- Effect of one pion exchange?

- $\Lambda\Sigma$ mixing and tensor force for many body effect?

- <u>p_A-s_A energy spacing</u>
 - "Another barometer" for study of density dependence of AN interaction

 $^{208}{
m Pb}(\pi^+,{
m K}^+)^{208}_{\Lambda}{
m Pb},\,{
m p}_{\pi}=1.06~{
m GeV/c}$ Hasegawa et al., PRC 53 (1996) 1210

$^{208}\Lambda$ Pb gamma-ray spectroscopy

Summary

Present status of hypernyclear γ-ray spectroscopy

- spin-dependent AN force was studied in s, p, sd-shell
- Existence of CSB effect in A=4
- Future measurements
 - **^{3}_{\Lambda}H measurement**

γ-ray spectroscopy exp.@ K1.1 beamline

Study of ΛN - ΣN mixing effect

s~p-shell neutron rich hypernuclei

 $[{}^4_\Lambda H \text{ and } {}^{12}_\Lambda C \text{ at early phase}]$

Study of CSB + $\Lambda N - \Lambda \Sigma$ mixing effect

Mediun-heavy hyper nuclei

Study of density dependence of AN interaction