# KOTO Step2 experiment

Koji Shiomi 2021/07/08

## Contents

- Physics on  $K_L \rightarrow \pi^0 \nu \nu$
- Experimental principle of the  $K_{L} \rightarrow \pi^{0} \nu \nu$  search
- KOTO experiment in Hadron Hall
- KOTO step2 in Extended Hadron Hall.
- Summary

## Physics on $K_L \rightarrow \pi^0 \nu \nu$

- Breaks CP symmetry directory
  - K<sub>L</sub>∝K<sup>0</sup>-K<sup>0</sup>
  - $A_{KL \to \pi 0 \nu \nu} \propto A_{s \to d} (A_{s \to d})^* \propto Im A_{s \to d}$
- Suppressed in the standard model (SM)
  - BR(SM)= $3x10^{-11} \propto Im(V_{ts}V_{td}^*)^2$
- Small theoretical uncertainty (<2%)</li>
  - Dominated by short distance interaction
  - Precisely estimated Hadron matrix by using the K+ $\rightarrow \pi^{0}e^{+}\nu$  data





3 2 S

3



## New Physics on $K_L \rightarrow \pi^0 \nu \nu$

- Can appear in the loop
- Can enhance the branching ratio



## What we want to reach at KOTO step2

- Discovery
  - BR(KL $\rightarrow \pi \nu \nu$ )  $\approx$  (SM prediction)  $\rightarrow \sim 5\sigma$  discovery →Measure BR with 30% accuracy
- New physics search
  - $|Br(K_{L} \rightarrow \pi^{0} \nu \nu) SM|/SM > 40\%$ →Indicate new physics
- Measurement of SM parameters
  - Measure CKM parameter  $\eta$ representing the size of CP violation with 15% accuracy



How to search the  $K_{L} \rightarrow \pi^{0} \nu \nu$  decay

### **Experimental Principle** Signature of $K_{L} \rightarrow \pi^{0} \nu \nu$



Assuming  $2\gamma$  from  $\pi^{0}$ , Calculate z vertex.  $M^{2}(\pi^{0})=2E_{1}E_{2}(1-\cos\theta)$ 

Calculate  $\pi^0$  transverse momentum

### **Experimental Principle** Suppression for background events $K_L \rightarrow \pi^+ e^- \overline{\nu}$ BR=4.0×10<sup>-1</sup> $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ BR=3×10<sup>-11</sup> charged particles Kı K



Signal region

Z Vertex

#### \* Detect charged particles with plastic scintillators





#### \*Cover decay volume with veto detectors

Z Vertex



Z Vertex



## **π0** Production through the interaction with residual gas



## \*Keep the decay volume to be high vacuum

Z Vertex



## π0 Production through the interaction with detectors around the beam hole



Z Vertex



#### Neutron make 2 clusters through hadronic interactions



Discriminate "neutron cluster" from "photon cluster"

## Basic detector design

#### Vacuum

#### Charged particle veto

#### Photon veto



## KOTO experiment in Hadron Hall

### KOTO experiment KL $\rightarrow \pi^{0} \nu \nu$ decay search @ Hadron Experimental Facility





#### Neutron collar counter (NCC)

#### Main barrel (MB)







#### Charged veto (CV)

![](_page_15_Picture_9.jpeg)

Calorimeter

![](_page_15_Picture_11.jpeg)

![](_page_15_Figure_12.jpeg)

#### KOTO data taking ×10<sup>18</sup> 140 <u>–</u>120 Accumulated 00 2015 data (Phys. Rev. Lett. 80 122, 021802) 2013 data (PTEP 2017, 021C01) 40 20

![](_page_16_Figure_1.jpeg)

# The latest results of KOTO 2016-2018 data analysis

#### Single Event Sensitivity = $(7.20 \pm 0.05_{stat} \pm 0.66_{syst}) \times 10^{-10}$

#### Final PT vs Z plot

Black: observed, Red: expected BG, Contour: signal MC

![](_page_17_Figure_4.jpeg)

 $N_{observed}$  (=3) is statistically consistent with  $N_{BG}$  (=1.22±0.26).

![](_page_17_Figure_6.jpeg)

## Prospects of KOTO

- Against K+ Backgrounds
  - $\cdot$  Plate with 0.5-mm square scintillating fibers to detect K+ in beam ( Efficiency  $\sim$  95% )
  - Installed in 2021
  - Further upgrade study is ongoing

#### **KOTO detector area**

![](_page_18_Figure_6.jpeg)

![](_page_18_Picture_7.jpeg)

![](_page_19_Figure_1.jpeg)

## KOTO step2 in Extended Hadron Hall

## KOTO Step2 in extended hadron hall

![](_page_21_Figure_1.jpeg)

- Measure branching ratio of the  $K_{L} \rightarrow \pi^{0}vv$  decay with
  - ~50 SM events for  $3 \times 10^7$  s run time - Signal-to-background ratio ~ 0.4

 $Br(K_{L} \rightarrow \pi^{0} \vee \nu) = SM$  $\rightarrow \sim 5\sigma$  discovery  $|Br(K_{L} \rightarrow \pi^{0}vv)-SM|/SM > 40\%$ →Indication of new physics

![](_page_21_Picture_6.jpeg)

### A new KL beam line KL yield dependence on extraction angle

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_1.jpeg)

### A new KL beam line Neutron profile

#### At Z=64m, Energy>0.3GeV

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_4.jpeg)

Halo="outside ±10cm" Core="inside ±10cm"

Ratio (Halo/Core)=1.84(±0.02)x10-4

Can improve the Halo/Core ratio by optimizing the collimator shapes

### A new KL beam line Trial to reduce K<sup>±</sup> contamination

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

#### K<sup>±</sup> profile@ beam exit

Optimization with higher MC samples are on going

![](_page_25_Picture_7.jpeg)

## A new KL beam line The effect of the beam dump

Simulation Setup for the effect of dump

![](_page_26_Figure_3.jpeg)

![](_page_26_Figure_6.jpeg)

![](_page_26_Figure_7.jpeg)

![](_page_26_Figure_8.jpeg)

## A new KL beam line The effect of the beam dump

• KL experimental area is just behind the beam dump

Simulation Setup for the effect of dump with additional steel Tagging plane Cu main dump |X|≤1m

![](_page_27_Figure_3.jpeg)

|                             | Current<br>dump | Additional<br>3m-thick<br>steel | Additional<br>5m-thick<br>steel | Addit<br>7m-t<br>ste |
|-----------------------------|-----------------|---------------------------------|---------------------------------|----------------------|
| Counting<br>rate<br>@ 100kW | 15 MHz          | 5.5 MHz                         | 2.6 MHz                         | 1.3 N                |

 Muon rate can be reduce to 1.3 MHz with additional 7m-thick steel.

 Cooperate with the primary beam channel group to look for a good configuration

![](_page_27_Picture_8.jpeg)

#### MHz

![](_page_27_Picture_10.jpeg)

## Detector for KOTO step2

![](_page_28_Figure_1.jpeg)

#### Signal region $: 2m \rightarrow 12m$ (x6) Calorimeter radius: $1m \rightarrow 1.5m$ (x.15)

## Signal acceptance

![](_page_29_Figure_1.jpeg)

(Sum of improvement factor on efficiency)  $\times$  (Increase of KL yield)=120

Beam power: 100kW

KL yield:  $1.1 \times 10^7 / 2.1 \times 10^{13} \text{ POT} \rightarrow \times 2.5 \text{ from KOTO}$ 

Data taking : 3 Snowmass years (3x10<sup>7</sup>s)

|                | Decay<br>Probability | Geometrical<br>Acceptance | Cut<br>efficiency | 1- Accidenta |
|----------------|----------------------|---------------------------|-------------------|--------------|
| Step2<br>iency | 10%                  | 24%                       | 26%               | 77%          |
| OTO<br>iency   | 3.3%                 | 26%                       | 3%                | 36%          |
| vement<br>ctor | 3                    | 0.9                       | 8.7               | 2.1          |

![](_page_29_Figure_8.jpeg)

![](_page_29_Picture_9.jpeg)

## Accidental loss

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_4.jpeg)

## **BG** estimation

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

## What is achievable in KOTO step2 with 100KW beam and 3 years data taking

- Discovery
  - BR(KL $\rightarrow \pi \nu \nu$ )  $\approx$  (SM prediction)  $\rightarrow \sim 5\sigma$  discovery  $\rightarrow$ Observe 49 events with 112 BG events  $\rightarrow$ Measure BR with 30% accuracy
- New physics search
  - $|Br(K_{\perp} \rightarrow \pi^{0} \nu \nu) SM|/SM > 40\%$ →Indicate new physics
- Measurement of SM parameters
  - Measure  $\eta$  with 15% accuracy

![](_page_32_Figure_8.jpeg)

## Summary

- $K_L \rightarrow \pi^0 \nu \nu$  decay is a powerful tool to search for new physics
- KOTO will reach the sensitivity of O(10<sup>-11</sup>) around 2025.
- KOTO step2 have potentials
  - Discovery the  $K_{L} \rightarrow \pi^{0} \nu \nu$  signal with  $5\sigma$
  - Measure the branching ratio with 30% accuracy
  - Indicate new physics if  $|Br(K_{\perp} \rightarrow \pi^{0} \nu \nu) - SM|/SM > 40\%$

![](_page_33_Figure_8.jpeg)

![](_page_34_Figure_0.jpeg)

# Now dominated by non-K

Measurement in the well (Under consideration)

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_5.jpeg)

## Muon flux measurement behind the current dump

# Neutron

#### At the exit of the beam line (Z=43m)

![](_page_36_Figure_2.jpeg)

### **Photon** At the exit of the beam line (Z=43m)

![](_page_37_Figure_1.jpeg)

#### Angle measurement

![](_page_38_Figure_1.jpeg)

- Incorrect vertex reconstruction
  - Reject with two additional photons
  - Narrower veto window

![](_page_38_Figure_5.jpeg)

15mm width of scintillator seems to be optimal

Still detector optimization<sup>39</sup> s on going.

![](_page_38_Figure_8.jpeg)

Sampling calorimeter made of alternating lead and plastic scintillator
Plastic scintillator is finely segmented in X- and Y-direction individually

• 1.5 degree angular resolution for 1 GeV photon

![](_page_39_Figure_0.jpeg)

../g2ana/step2geom\_step2mome15cm\_Kplus\_1MeV\_100pe\_9.root

Second magnet :  $\times 1/4$  or less  $\rightarrow$  hope to be 1/10If more reduction is needed, we will have UCV (with additional acceptance loss)

CBAR / newBHCV are responsible for the inefficiency of  $e^{\pm}$ 

```
K^{\pm}/K_L = 4.1 \times 10^{-6}
The same momentum spectrum as in K_L
Only Ke3 decay
With 0.9<sup>4</sup> additional cut acceptance
```

![](_page_40_Figure_0.jpeg)

wR=20\*ns \* 6.7MHz = 0.13

13% loss

## Situation of $K_L \rightarrow 2\pi^0$ background

• Detector inefficiency is a key.

#### Contributing detector for $K_L \rightarrow 2\pi^0$ background

![](_page_41_Figure_3.jpeg)

| h      |       |  |  |
|--------|-------|--|--|
| 303712 |       |  |  |
| 7.064  |       |  |  |
| 8.465  |       |  |  |
| 0.6744 |       |  |  |
| 1.46   |       |  |  |
|        | 116.3 |  |  |
| 0      | 0     |  |  |
| 16     | 0     |  |  |
| 0      | 0     |  |  |
|        |       |  |  |

../g2ana\_tBV15ns/step2geom\_step2mome15cm\_pi0pi0\_1MeV\_100pe\_9.root

![](_page_41_Figure_8.jpeg)

#### Effect of Barrel timing window, BHPV for $K_L \rightarrow 2\pi^0$

- Narrow barrel veto window is feasible.
  - Thanks to good timing variable
- BHPV would reduce # of BG.
  - 24 p.e. threshold is not effective.
  - Operation is difficult.
  - BHPV can be removed.

Barrel Timing Window B 20ns 50ns 50ns 50ns

| BHPV threshold | # of BG     |
|----------------|-------------|
|                | $120 \pm 5$ |
| 24p.e.         | $115 \pm 4$ |
| 12p.e.         | $90 \pm 3$  |
| 6p.e.          | $60 \pm 2$  |

![](_page_43_Figure_0.jpeg)

# High momentum KL

![](_page_44_Figure_1.jpeg)

- $p_{\text{peak}} = 2.9 \,\text{GeV}/c$
- $l = \gamma \beta c \tau \sim 6 \times 15 \text{ m} = 90 \text{ m}$

Step1:4.2 ×  $10^{7}/2 \times 10^{14}$ POT

Step2:11 ×  $10^{7}/2 \times 10^{14}$ POT

![](_page_44_Figure_6.jpeg)

Beam size:  $10cm \rightarrow 15cm \times 2$ 

(measurement)  $\times 5 \times 1/4 \times 2 = 2.5$ (Geant3 simulation)