International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility (J-PARC HEF-ex WS) 7-9 July, 2021

Baryon Spectroscopy at J-PARC

Hiroyuki Noumi for the K10 Task Force RCNP, Osaka University/IPNS, KEK

Contents:

- -- Introduction
- -- Charmed Baryons
- -- Multi-strangeness Baryon, a bridge to K10
- -- Summary

How does QCD work in Hadrons and Hadron-Hadron Interactions ?

Baryon Structure

• Non-trivial gluon field $\Rightarrow \langle \overline{q}q \rangle$, constituent q, NG boson,

 $U_A(1)$ anomaly $(\eta - \eta' \text{ mass diff.})$

Meson Cloud (~1 fm)

"Quark core"

 $U_A(1)$ anomalous singlet current Diquark in Heavy Baryons in Chiral diquark effective theory Chiral partner $(qq:0^+) \leftrightarrow (qq:0^-)$ λ mode ρ mode d_I by M. Oka L=0, L=1 by A. Hosaka [**_=**0 L=1 Scalar diquark Λ_{c} ρ modes $S_i^a = rac{1}{\sqrt{2}} (d_{R,i}^a - d_{L,i}^a)$ $3^{3}\rho_{0,1,2}$ $P^{\underline{L=0}}O(1/2)1/2^{-}, 3/2^{-}, 3/2^{-}, 5/2^{-}$ ρ mode $^{61}\rho_1 V^{L=0}Q(1/2^2, 3/2^2)$ $\longrightarrow M(0^+) = \sqrt{m_0^2 - m_1^2 - m_2^2},$ **P-wave** ρ mode λ modes Pseudo-scalar diquark $^{6^{3}\lambda_{0,1,2}}A^{-L=1}Q$ λ mode 12°, 1/2°, 3/2°, 3/2°, 8/2° single quark $P_i^a = \frac{1}{\sqrt{2}} (d_{R,i}^a + d_{L,i}^a)$ $\overline{3}^{1}\lambda_{1}$ S^{L=1}Q (1/2⁻, 3/2⁻ mode diquark 1 enin_enin motion $A^{L=0}Q$ (1/2⁺, 3/2⁺) ground states S-wave λ mode, $\longrightarrow M(0^{-}) = \sqrt{m_0^2 + m_1^2 + m_2^2},$ $3^{1}S_{0} = S^{L=0}Q$ (1/2⁺) $m_Q \neq m_q$ $m_Q = m_q$ ground states Kim et al, Phys.Rev.D 102 (2020) 014004

Systematic behavior of Spin-Spin(SS) Int.

$$V^{SS} = \sum_{i < j} \alpha_S^{SS} \frac{16\pi}{9m_i m_j} \delta(r_{ij}) \overrightarrow{s_i} \cdot \overrightarrow{s_j}$$

• *SS* int. seems well described by CQM (OGE).

Systematic behavior of Spin-Orbit(LS) Int.

- *LS* splitting vanishes in light baryons.
 - CQM, which suggests $\Delta_{LS}^{\rho} \sim 100$ MeV, does not reproduce the LS splitting.
- Cancellation mechanism exists?
 - Instanton Induced Interaction (III)

Systematic behavior of Spin-Spin(SS) Int.

$$R_{OGE} + R_{III} \sim 0.6 + 0.4 \exp\left(-\frac{m_Q - m_q}{\Lambda_{\chi}}\right)$$

- Very Naive demo.: OGE + III seems work well.
 - III is comparable to OGE to explain $\eta \eta'$ mass diff.

• III works only in flavor-antisymmetric system in light quarks (u,d,s).

Systematic behavior of Spin-Orbit(LS) Int.

- *LS* splitting vanishes in light baryons.
 - CQM, which suggests $\Delta_{LS}^{\rho} \sim 100$ MeV, does not reproduce the LS splitting.
- Cancellation mechanism exists?
 - Instanton Induced Interaction (III)

 $V^{LS} \sim (R_{OGE} - R_{III}) \Delta$

Destructive for *LS*

• *LS* splitting in heavier systems are to be investigated with identifying if they are λ/ρ -mode excitations

Baryon Spectroscopy at High-p 2nd (π20) -- Charmed Baryons

Disentangle diquark correlations

 $V_{CMI} \sim [\alpha_s / (m_i m_j)]^* (\lambda_i, \lambda_j) (\sigma_i, \sigma_j)$ $\rightarrow 0 \text{ if } m_{i,j} \rightarrow \infty \text{ (HQ symm.)}$ $V_{CMI} \sim (15 - \overline{2}) = 1/2* V_{CMI} (15 - 1)$

$$V_{CMI}({}^{1}S_{0}, \bar{3}_{c}) = 1/2*V_{CMI}({}^{1}S_{0}, 1_{c})$$
[qq]
[$\bar{q}q$]

- Motion of "qq" is singled out by a heavy Q
 - Diquark correlation
- Level structure, Production rate, Decay properties
 - sensitive to the internal quark(diquark) WFs.
- Properties are expected to depend on a Q mass.

Disentangle motions of a light-quark pair w/ a heavy quark (HQ)

 \mathcal{K} Identifying λ/ρ modes -> provide internal quark motions and correlation

Systematic behavior of Qqq Baryons Qqq: singly-heavy quark (Q)+ diquark (qq)

*Curves: CQM calculation by T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D92 (2015)414029

Production and Decay of Charmed Baryons

Replacing *u*-quark in a proton into *c*-quark

Remarks

- Introducing a finite orbital angular momentum $L \Rightarrow$ highly excited states
- Production ratio of the HQ doublet to be $L:L+1 \Rightarrow$ Spin, Parity (\mathcal{I}^{p})
- Production and Decay measurement ⇒ Branching Ratio (partial width)

Expected Mass Spectrum (Simulation)

XSimulation with know states assuming

- λ/ρ and Spin-Parity
- cross sections estimated by theoretical model
- background due to particle miss-identification

☆Prod. Rates and Decay Pattern

- Specify a pair of the HQ doublet × unexpected pair may be identified.
- Spin-parity (J^{P}) is to be determined

Identify λ/ρ mode

Internal structure (wave func.)
 (q motion and qq correlation)

Production of Charmed Baryons: Theoretical Study

Reggeon Exchange Model in 2-body reaction

S.H. Kim, A. Hosaka, H.C. Kim, and H. Noumi PRD92 (2015) 094021

%no data available is in the charm sector.

One-quark process

Two-quark process

Production rate in excited state

S.H. Kim, A. Hosaka, H.C. Kim, and H. Noumi, PTEP 2014 (2014) 103D01

$$R \sim \left\langle \varphi_f \left| \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) \right| \varphi_i \right\rangle$$

$$I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$$

Mom. Trans. : q_{eff}~1.4 GeV/c α~0.4 GeV ([Baryon size]⁻¹)
※λ-mode states w/ finite L are populated.

S.I. Shim, A. Hosaka, H.C. Kim, PTEP 2020, (2020) 5, 053D01

Comparable ρ -mode excitations are expected.

Charmed Baryon Spectroscopy at J-PARC

High-p Beam Line * At present, E16 ($\phi \rightarrow e^+e^-$ in nuclei) is in operation with a 30GeV (primary) proton beam

Dipole Magnet

for Spectrometer

- 20 GeV/c π -
- Intensity $>10^7$ /s
- Δp/p~ 1/1000

Spectrometer System

Acceptance: ~ 60% for D^* , ~ 80% for decay π^+ Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity : ~2.1 Tm)

Spectrometer System

Acceptance: ~ 60% for D^* , ~ 80% for decay π^+ Resolution: $\Delta p/p \sim 0.2\%$ at ~5 GeV/c (Rigidity : ~2.1 Tm)

"High-p Beam Line" has taken off in a primary mode

XAt present, E16 ($\phi \rightarrow e^+e^-$ in nuclei) is in operation with a 30GeV (primary) proton beam

Toward "High-p 2nd"

- 15-kW loss TGT \rightarrow 20 GeV/c π -, >10⁷ /s
- BL Design in progress
 - Satisfy Rad. Safety regulation
 - Shielding, Air-born activity
 - Maintenance scenario
 - Residual Rad.<0.1 mSv/h

Hadron Physics at the High-p BL

Ξ

- Baryon Spectroscopy
 - $p(\pi^{-}, D^{*-})Y_{c}^{*}$ (E50)
 - p(K⁻,K^{*})Ξ^{*}, p(K⁻,K⁺K^{*})Ω^{*} (LoI:KEK/J-PARC-PAC 2014-4)
 - Search for D_{30} Dibaryon State in $pp \rightarrow \pi^{-}\pi^{-}D_{30}$ (E79)
 - $p(\pi^-, K^*)\Lambda(1405)$ at large *s*, *t* (to be proposed)
- Hadron Tomography
 - Exclusive DY, $\pi^- p \rightarrow \mu^- \mu^+ n$ (LoI: KEK/J-PARC-PAC 2019-7)
- For Strangeness Nuclear Physics
 - Λp (*P*-wave) Scattering for the study of high-density nuclear matter (LoI: KEK/J-PARC-PAC 2020-08)
- For Neutrino Physics
 - Hadron Production for neutrino beams

 $t = (p - p')^2$

21

Baryon Spectroscopy at High-p 2nd (π20) -- Multi-strangeness Baryon, a bridge to K10

Level Structure of Double-Q baryons

- λ and ρ mode excitations interchange

Multi-Strangeness Baryon Spectroscopy Using Missing Mass Techniques

M. Naruki and K. Shirotori, LoI submitted to the 18th J-PARC PAC in May, 2014(KEK/J-PARC-PAC 2014-4)

- ✓ Production and Decay reflect [QQ] correlation
- ✓ U-channel production may be dominant
- ✓ Two-quark-involved reaction \rightarrow Both ρ/λ mode excitation

Measured Ξ (PDG)

	Threshold		JP	rati ng	Width [MeV]	$egin{array}{c} \rightarrow \Xi \pi \ [\%] \end{array}$	→ΛK [%]	→ΣK [%]		
		Ξ(2500)	??	1*	150?					
		Ξ(2370)	??	2*	80?				Ω K~9±4%	
	$\Omega \overline{K}$ (2166)	Ξ(2250)	??	2*	47+-27?					
		Ξ(2120)	??	1*	25?					
	∇ <u>₩</u> *(1002)	Ξ(2030)	>=5/2?	3*	20+155	small	~20	~80	Why Σ K?	
$\Sigma^*\overline{K}$ (1878)	$\Delta \overline{K}^*$ (1985) $\Lambda \overline{K}^*$ (1908)	Ξ(1950)	??	3*	60+-20	seen	seen			
		Ξ(1820)	3/2-	3*	24+15-10	small	Large	Small		
Ξ* π(1665)	$\Sigma \overline{K}$ (1685)	Ξ(1690)	??	3*	<30	seen	seen	seen		
	$\Lambda \overline{K}$ (1610)	Ξ(1620)	??	1*	20~40?					
	$\Xi_{\pi}(1/150)$	Ξ(1530)	3/2+	4*	19	100				

✓ Most of spins/parities have NOT been determined yet.
 ✓ Why the Ξ* -> πΞ decay seems to be suppressed?
 ✓ expected to reflect QQq configuration.

Ξ Baryon Spectroscopy w/ the High-p Secondary Beam Lol submitted by M. Naruki and K. Shirotori

• Sizable yields are expected for a month.

Reaction	$\sigma \ [\mu b]$	Beam [/spill]	B.R.	Acceptance [%]	Y_{Total}	$Y_{Decay/bin}$
$K^-p \rightarrow \Xi^{*-}K^+$	1.0	10^{6}	1.0	50	$3.1{\times}10^5$	2500
$K^-p \rightarrow \Xi^{*-}K^{*+}$	1.0	10^{6}	0.23	50	0.7×10^{5}	580
$K^- p \rightarrow \Xi^{*0} K^{*0}$	1.0	10^{6}	0.67	50	$2.1{ imes}10^5$	1700
$\pi^- p \to \Xi^{*-} K^{*0} K^+$	0.1	10^{7}	0.67	50	$3.1{\times}10^5$	2500

• Past exp.

Omega*: Productive Kaon Beams

Measured Ω (PDG)

		JP	rat ing	Width [MeV]	→ΞK (1)	→Ξ*K (2)	→ΞK* (3)	$ ightarrow \Xi K \pi$ (4)	$ ightarrow \Omega \pi \pi$ (5)	
Threshold	Ω(2470)	<u>;</u> ;	2*	72+-33					seen	LASS (113MK-,11GeV/c) (290+-90)/(5) nb
Ξ0K*- 2109	Ω(2380)	??	2*	26+-23		<0.44 to (4)	0.5+-0.3 to (4)			Xi Beam
Ξ0*K- 2024 Ξ0K-π0 1956	Ω(2250)	??	3*	55+-18		0.7+-0.2 to (4)		Seen		Xi Beam LASS (113MK-, 11GeV/c) (630+-180)/(2) nb
Ωπ0π0 1942	Ω(2012)	?-	3*	6.4 ^{+2.5} - _{2.0} +-1.6	1.2+-0.3 (=X0/X-)	<0.119 /(1)				->E*K dominant if E*K mol?
Ξ0K- 1811 (Οπ0 1807)	Ω(1672)	3/2+	4*	-						

✓ Most of spins/parities/decay branches have yet to be determined.

✓ What the production $\Xi^* \to \Omega^* K$ and Ω^* decay modes tell us

Systematics of Qss Baryons – Ξ and Ω –

 $arOmega_{Q}^{*}$

In Summary...

How quarks build hadrons?

Dynamics of non-trivial QCD vacuum in baryon structure

X Chiral condensate $\langle \bar{q}q \rangle \neq 0$, $U_A(1)$ anomaly

 \Rightarrow Constituent q and NG boson (effective DoF).

s- and c-baryon spectroscopy: q correlation and spin-dep. force

$\succ \Omega^*$ (sss) Baryon (K10)

Single-flavored (Flavor-symmetric) system Free from pion cloud →Spin-orbit Force (One Gluon Exchange)

 \rightarrow Roper-like (2S, 3/2+) states("quark core" size)

2.5

2.6

2.7

2.8

Missing Mass [GeV/c²]

2.9

2.4

2.2

2.3

Meson Cloud

'Quark core"

(~0.5 fm)

(~1 fm)

How quarks build hadrons?

Dynamics of non-trivial QCD vacuum in baryon structure

※Chiral condensate $\langle \bar{q}q \rangle \neq 0$, $U_A(1)$ anomaly

 \Rightarrow Constituent q and NG boson (effective DoF).

s- and c-baryon spectroscopy: q correlation and spin-dep. force

Expected Mass Spectrum (Sim.) Charmed Baryon (High-p) $(\pi^{-} p \rightarrow D^{*-} Y_{c}^{*+})$ ੇ 350 -[dd] Disentangle the diquark correlation HIHR **K10** $\rightarrow \lambda/\rho$ mode assignment (2 40) $\rightarrow U_A(1)$ anomaly: $[qq](0^+) \leftrightarrow (qq)(0^-)$ /c²] $\blacktriangleright \Omega^*$ (sss) Baryon (K10) KL2 High-p (π20) 🌉 Single-flavored (Flavor-symmetric) system K1.1/K1.1BR Free from pion cloud \rightarrow Spin-orbit Force (One Gluon Exchange) 10000F \rightarrow Roper-like (2S, 3/2+) states("quark core" size) 5000F

Meson Cloud

"Quark core"

(~0.5 fm)

(~1 fm)

Missing Mass [GeV/c²]

1.8