Ω baryon spectroscopy at the K10 beam line

K. Shirotori for the K10 Task Force

Research Center for Nuclear Physics (RCNP) Osaka University

International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility (J-PARC HEF-ex WS) 9th Jul 2021

Contents

Introduction

- Physic motivation
- Role of Ω baryon
- Experiment
 - K10 beam line and spectrometer
 - Expected missing mass spectrum
- Summary

Introduction

How quarks build hadrons ?

- Understand mechanism how quarks build hadrons ?
- Investigations of internal structure for revealing effective degrees of freedom and their interactions

Hadron spectroscopy at J-PARC

- Dynamics of non-trivial QCD vacuum in baryon structure
 - % Chiral condensate $\langle \bar{q}q \rangle \neq \mathbf{0}$, U_A(1) anomaly
 - \Rightarrow Constituent quarks and NG bosons (effective degrees of freedom)
 - Their dynamics has yet to be understood, keeping a link to QCD.
- s- and c-baryon spectroscopy: Disentangle quark correlation and spin-dependent forces

- Spin-dependent forces
- Internal quark motion

via Ω baryon spectroscopy @ K10

Baryon structure: QCD vacuum

- Too large α_{s}^{ss} (>1): Spin-Spin interaction
- Missing LS force: Disappearance in N^{*}, but heavy quark baryons have.
- **Roper-like resonances:** Small excitation energy and wide decay width(quark motion)

Role of Ω baryon: Single flavor system

- Ω baryon: "3 strange quark single flavor system" ⇒ Free from Pion cloud
 * Direct access to "Quark core" region
- \Rightarrow Clear extraction of interactions from studies of excited states
 - One Gluon Exchange(OGE) and Instanton Induced Interaction(III)

Spin-dependent forces

- Investigate short-range q-q correlation and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Meson cloud

• Systematics of spin-orbital interaction

- Disappears in N^{*} (OGE/III cancelled)
- Appears in Λ_c^* , Ξ_c^* and Λ_b^* (OGE only)

• Ω^* baryon

- Flavor-symmetric system
- Free from pion cloud
- ⇒ LS splitting: OGE (III forbidden)
 - $\Omega(2012)^{-}(3/2^{-}?) \Leftrightarrow \Omega^{*-}(1/2^{-}?)$
 - 1P state baryons
 - Degenerate ?
 - LS partners (2D states)

Roper-like resonances

- Investigate short-range q-q correlation and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Meson cloud
- Systematics of Roper-like states (Radial excitation 2S states)
 - Mass universality ?
 - What does determine its width ?
- Ω^* baryon
 - Flavor-symmetric system
 - Free from pion cloud
- ***** Width tells quark motion.: $\Gamma \sim \langle p_q \rangle$
- \Rightarrow Size of "quark core": $\langle r_q \rangle \sim 1/\langle p_q \rangle$
 - Roper-like state: Where is it ?

Ω baryon spectroscopy at K10

***** Systematic measurements: Properties of excited states

- Mass, width, spin-parity, decay branching ratio
- Production rate ⇔ Ground state vs Excited states
- 1. $\Omega(2012)^{-}(3/2^{-}?, Molecular state ?)$
 - Determination of J^p by decay angular distribution
 - Search for LS partner(1/2⁻) (Mass, Γ, J^p and B.R.)
 - Absolute decay branching ratio: $K^- + \Xi$, $K^- + \Xi^*$, $K^- + \Xi + \pi$ modes
- 2. Roper-like resonance: $\Omega(2160)^-$?
 - Mass & Width
 - Determination of J^p by decay angular distribution
 - Absolute decay branching ratio: $K^- + \Xi$, $K^- + \Xi^*$, $K^- + \Xi + \pi$ modes

3. Searching for resonances ($\Gamma < 100$ MeV and ~ 1 -GeV excitation energy)

- Mass & Width
- Determination of J^p by decay angular distribution
- Absolute decay branching ratio (all measurable modes)
- Search for LS partners (Mass, Γ, J^p and B.R.)

Measured Ω^{*-} states by PDG

2021 Review of Particle Physics.

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

Ω BARYONS (S = -3, I = 0)

 $\Omega^- = s \ s \ s$

Ω^{-}		$3/2^+$	****
$\Omega(2012)$	<u>)</u> -	?-	***
	·/		بله بلد بله
M(2250)))		***
$\Omega(2380$))-		**
0(2470)-		**
32(2410))		
****	Existence is certain, and properties are at least fail	irly explored.	
***	Existence ranges from very likely to certain, but fu	urther confirmation is desirable and/or o	uantum numbers, branching
	fractions, etc. are not well determined.		
**	Evidence of existence is only fair.		
	Evidence of existence is only fair.		

- Most of spins/parities/decay branches have not been determined yet.
- $\Omega(2380)^-$ and $\Omega(2470)^-$ are discarded from PDG table.

Experimental situations: K⁻ p reaction

• Need data by experiment with modern technique

 \Rightarrow High-performance facility and suitable experimental setup

• High-intensity K⁻ beam and large acceptance spectrometer

Experiment

Experimental method: Ω baryon spectroscopy

- Reaction: $\mathbf{K}^- + \mathbf{p} \rightarrow \Omega^{*-} + \mathbf{K}^{*0}(\mathbf{K}^0) + \mathbf{K}^+$
 - Beam momentum: 7–10 GeV/c for producing up to 1-GeV excited states
- Missing mass method: $K^{*0} \& K^+ / K^0(K_s^0) \& K^+$
 - K^{*0} channel \Rightarrow Expect good S/N by using s = -3 tagged reaction
- Decay measurement: $\Xi^{(*)0}$ & K⁻ / Ω^- & π^+ π^-
 - Decay products obtained as missing mass

K10 beam line and spectrometer

- K10 beam line
 - High-intensity high-momentum K⁻ beam with high purity
- Spectrometer
 - Multi-purpose system to detect $\boldsymbol{\Omega}$ baryon production events

K10 beam line specification

- Beam Intensity: Several 10⁶ /spill (2-second extraction)
 - High-purity K⁻ beam (K/ $\pi \sim 1/2$)
- Beam-spectrometer resolution: $\Delta p/p \sim 0.1\%(\sigma)$
 - By QQDDQ magnet configuration for analyzing beam momentum

	7 GeV/c	8 GeV/c	9 GeV/c	10 GeV/c
QQDDQ (central stopper)	8.3 (1/2.1)	7.9 (1/2.1)	6.7 (1/2.1)	4.7 (1/2.5)

* Purity K⁻/ π^- = 1/2 case \Rightarrow 8.0 M/spill (K⁻) w/ 16 M/spill (π^-) Total = 24 M/spill (12 Mcps)

100 mm × 100 mm size (Similar to high-p BL conditions)

Detector configuration of spectrometer system

- High-rate beam detectors
 - Scintillating Fiber Tracker
 - Cherenkov Timing detector
- High-performance PID detectors
 - RICH and Beam RICH
 - High timing-resolution TOF wall: RPC
 - Threshold-type Cherenkov detector: Vth AC
- Large size detectors for scattered particles
 - Large size drift chambers
 - Forward TOF wall
 - Side and pole face RPC wall

W/ Trigger-less DAQ by streaming method

• Detection of all possible reactions simultaneously

Acceptance and missing mass resolution

• Acceptance (isotropic distribution): 30–50% (K*0) and ~30% (K_s^0)

- Flat acceptance for excited states
- Missing mass resolution: 3–5 MeV(rms) (K*0)
 - Better resolution of excited state than that of ground state.
- \Rightarrow Width (< 10 MeV) can directly be measured.
 - Beam line: $\Delta p/p \sim 0.1\%(\sigma)$ & E50 spectrometer: $\Delta p/p \sim 0.2\%(\sigma)$ @ 5 GeV/c
 - Effect of energy loss straggling by target: 2 MeV(σ)

Yield estimation

Reaction mode	Beam [GeV/c]	σ _{ch} [μb]	B.R. (K ⁰ , K [*])	Beam [/spill]	Efficiency	Acceptance	Yield (100 days)
$K^{-}p \rightarrow \Omega^{*-}K_{s}^{\ 0}K^{+}$	8.0	2.50	0.35	7 × 10 ⁶	0.66	0.28	$4.6 \times 10^{6} (4.6 M)$
$K^{-}p \rightarrow \Omega^{*-}K_{s}^{\ 0}K^{+}$	10.0	3.50	0.35	7 × 10 ⁶	0.66	0.30	$6.4 \times 10^{6} (6.4 \mathrm{M})$
$K^{\!-}p \to \Omega^{*\!-}K^{*0}K^{\!+}$	8.0	0.063	0.67	7 × 10 ⁶	0.66	0.43	$3.3 \times 10^5 (330 \text{k})$
$K^{-}p \rightarrow \Omega^{*-}K^{*0}K^{+}$	10.0	0.088	0.67	7 × 10 ⁶	0.66	0.50	$4.6 \times 10^5 (460 \mathrm{k})$

Assumption of cross sections

$$\Rightarrow \sigma_{\text{Total}} = 2.0, 2.5, 3.0, 3.5 \ \mu b \ (7, 8, 9, 10 \ \text{GeV/c})$$

$$\sigma_{K0} = \sigma_{Total} \times 1/1 (K^{-} p \rightarrow \Omega^{-} K^{+} K^{+})$$

 $= \sigma_{\text{Total}} \times 1/40 \text{ (K}^- \text{ p} \rightarrow \Omega^- \text{ K}^+ \text{ K}^+ \pi^-)$ From old date @ 4.2 GeV/c

* We will measure $\sigma_{G,S}$ at the high-p beam line.

- Conditions
 - Target thickness: 4.0 g/cm² (E50 target)
 - Efficiencies and acceptance
 - Spill cycle: 5.2 sec

Background cross section from JAM simulation

Reaction	Beam [GeV/c]	σ _{ch} [mb]	Final state 1 (K ⁺ , π ⁻) [μb]	Final state 2 (K ⁺ , K ⁺ , π ⁻) [μb]	Signal 1 (K ⁰) [µb]	Signal 2 (K ^{*0}) [µb]	Ratio K ⁰ /(K ⁺ , π ⁻)	Ratio K ^{*0} /(K ⁺ , K ⁺ , π ⁻)
K⁻ p	7.0	25.6	463	1.80	2.00	0.050	0.43%	2.8%
K⁻ p	8.0	23.6	503	2.46	2.50	0.063	0.50%	2.6%
K- p	9.0	23.2	548	3.16	3.00	0.075	0.55%	2.4%
K⁻ p	10.0	22.6	585	4.22	3.50	0.088	0.60%	2.0%

- Background by hadron reaction generator
 - JAM (Jet AA Microscopic transport model)

Y. Nara et.al. Phys. Rev. C61 (2000) 024901

- \Rightarrow Cross section of multi-K⁺ production is small.
 - $\times 1/200 \sim 1/100$ smaller than single K⁺ production
 - Good S/N of K^{*0} than K⁰
- JAM results were checked by studies for charmed baryon spectroscopy.
 - Cross check with PYTHIA: Similar results
 - Actual measurements at the high-p beam line

Expected missing mass spectrum: $K^-\,p \to \Omega^{*-}\,K^{*0}\,K^+$

Ω*- events: 3.3×10⁵ events (63 nb: Same cross section for all resonances)
100-days beam time events (1.0×10¹³ K⁻ on target)

Momentum dependence data: 7–10 GeV/c

- Ω^{*-} states in PDG are generated.
- Roper-like state:
 Ω(2160)⁻, Γ = 100 MeV (assumed)
- Briet-Wigner type resonances
- Higher resonance search: Up to 1.5 GeV excitation energy by 10 GeV/c beam
- Determination of width (Different missing mass resolution condition)
- Identify fake structures coming from the kinematic effects

Missing mass spectrum (K^{*0} K⁺ reaction) @ 8 GeV/c

- Smaller cross section cases
 - Searching for highly excited resonances with wide widths \Rightarrow Improvement of S/N

Decay event selection: K⁻ decay detection ($\Omega^{*-} \rightarrow \Xi^0 + K^-$)²⁴

- For searching resonance, decay event selection can be used. : $1.30 < M_{\Xi} < 1.33$
- Signal ⇒ 0.25 (Branching ratio: ~0.3× Acceptance: ~0.8)

Missing mass spectrum (K*0 K+ reaction) @ 8 GeV/c

- Signal: $\times 0.25 \Leftrightarrow$ Background: $\times 1/40 \Rightarrow S/N \times 10$
- Smooth background case: Sensitivity (5 σ) ~1 nb for Γ = 100 MeV

Decay angular analysis: Determination of J^P

• # of signal = ~4,000 counts / 20 bin (B.R = 0.3): < 1% stat. error

 \Rightarrow To perform determination of spin and parity combined with other information

• Model independent analysis can be performed by combining Ξ^* data.

Ω baryon spectroscopy at K10

- ***** Systematic measurements: Properties of excited states
 - Mass, Width, spin-parity, decay branching ratio
 - Production rate ⇔ Ground state vs Excited states
- 1. $\Omega(2012)^{-}(3/2^{-}?, Molecular state ?)$
 - Determination of J^p by decay angular distribution
 - Search for LS partner(1/2⁻) (Mass, Γ, J^p and B.R.)
 - Absolute decay branching ratio: $K^- + \Xi$, $K^- + \Xi^*$, $K^- + \Xi + \pi$ modes
- 2. Roper-like resonance: $\Omega(2160)^-$?
 - Mass & Width
 - Determination of J^p by decay angular distribution
 - Absolute decay branching ratio: $K^- + \Xi$, $K^- + \Xi^*$, $K^- + \Xi + \pi$ modes

3. Searching for resonances ($\Gamma < 100 \text{ MeV}$)

- Mass & Width
- Determination of J^p by decay angular distribution
- Absolute decay branching ratio (all measurable modes)
- Search for LS partners (Mass, Γ , J^p and B.R.)

Summary

- How quarks build hadrons ?
- \Rightarrow Dynamics of non-trivial QCD vacuum in baryon structure
 - Their dynamics has yet to be understood, keeping a link to QCD.
 - *s* and *c*-baryon spectroscopy: Disentangle quark correlation and spin-dependent forces
- Ω (sss) baryon: Single flavor system
 - Only 3 strange quark system: Simple structure of excites states
 - Pion cloud less system: Clear extraction of information of quark interactions
- \Rightarrow Investigations of "quark core" region of baryon
 - Spin-dependent forces and quark motions
- Ω baryon spectroscopy
 - K10 beam line and large acceptance spectrometer
 - Missing mass (production) + decay measurement (J^P)
 - $K^- + p \rightarrow \Omega^{*-} + K^{*0} + K^+$ reaction is essential.
 - Large acceptance(~50%) and high mass resolution(< 5 MeV)
 - Expected mass spectrum: High S/N ratio
 - J^P can be determined from decay measurements.

Backup slides

How quarks build hadrons? Dynamics of non-trivial QCD vacuum in baryon structure

※Chiral condensate $\langle \bar{q}q \rangle \neq 0$ ($U_A(1)$ anomaly) ⇒ Constituent q and NG boson (effective DoF).

s- and c-baryon spectroscopy: q correlation and spin-dep. force

Ω* (sss) Baryon (K10)

Single-flavored (Flavor-symmetric) system Free from pion cloud →Spin-orbit Force (One Gluon Exchange) →Roper-like (2S, 3/2+) states("quark core" size)

Meson Cloud

'Quark core"

(~0.5 fm)

(~1 fm)

Systematic behavior of Spin-Spin(*SS* **) Int.**

$$V^{SS} = \sum_{i < j} \alpha_S^{SS} \frac{16\pi}{9m_i m_j} \delta(r_{ij}) \vec{s_i} \cdot \vec{s_j}$$

• SS int. seems well described by CQM (OGE).

Systematic behavior of Spin-Orbit(LS) Int.

• LS splitting vanishes in light baryons.

- CQM, which suggests $\Delta_{LS}^{\rho} \sim 100$ MeV, does not reproduce the *LS* splitting.
- Cancellation mechanism exists?
 - Instanton Induced Interaction (III)

Systematic behavior of Spin-Spin(SS) Int.

Systematic behavior of Spin-Orbit(LS) Int.

• LS splitting vanishes in light baryons.

• CQM, which suggests $\Delta_{LS}^{\rho} \sim 100$ MeV, does not reproduce the *LS* splitting.

- 0.4 Cancellation mechanism exists?

• Instanton Induced Interaction (III)

$$V^{LS} \sim (R_{OGE} - R_{III}) \Delta$$

Destructive for *LS*

• LS splitting in heavier systems are to be investigated with identifying if they are λ/ρ -mode excitations

How quarks build hadrons? Dynamics of non-trivial QCD vacuum in baryon structure

※Chiral condensate $\langle \bar{q}q \rangle \neq 0$ ($U_A(1)$ anomaly) ⇒ Constituent q and NG boson (effective DoF).

• Dynamics of Effective Degrees of Freedom

$$H = K + V^{Conf} + V^{Coul} + V^{SS} + V^{LS} + V^{T}$$

$$K + V^{Conf} = \sum_{i} (m_{i} + \frac{p_{i}^{2}}{2m_{i}}) + \sum_{i < j} br_{ij} + C$$

$$V^{Coul} = \sum_{i < j} -\alpha_{S}^{Coul} \frac{2}{3r_{ij}}$$

$$V^{SS} = \sum_{i < j} \alpha_{S}^{SS} \frac{16\pi}{9m_{i}m_{j}} \delta(r_{ij}) \overrightarrow{s_{i}} \cdot \overrightarrow{s_{j}}$$

$$V^{LS} = \sum_{i < j} \frac{\alpha_{S}^{LS}}{3r_{ij}^{3}} \left\{ \left[\left(\frac{1}{m_{i}^{2}} + \frac{1}{m_{j}^{2}} + \frac{4}{m_{i}m_{j}} \right) \overrightarrow{L_{ij}} \cdot (\overrightarrow{s_{i}} + \overrightarrow{s_{j}}) \right] + \left(\frac{1}{m_{i}^{2}} - \frac{1}{m_{j}^{2}} \right) \overrightarrow{L_{ij}} \cdot (\overrightarrow{s_{i}} - \overrightarrow{s_{j}}) \right\}$$

Non-trivial gluon filed (Instantons), LQCD demo. by D. Leinweber

Role of Ω baryon: Simple system

Ω baryon: "3 strange quark simple system" ⇒ Free from Pion cloud
* Direct access to "Quark core" region.

⇒ Clear extraction of interactions from studies of excited states

- Origin of spin-dependent interaction
- ⇒ Systematic measurement of baryon systems

Decay angular analysis: Determination of J^P

• # of signal = ~4,000 counts / 20 bin (B.R = 0.3): < 1% stat. error

 \Rightarrow To perform determination of spin and parity combined with other information

• Model independent analysis can be performed by combining Ξ^* data.

to be determined as well

Simulation conditions: Ω baryon spectroscopy

- Reaction: $K^- + p \rightarrow \Omega^{*-} + K^{*0}(K_s^{0}) + K^+$
 - Isotropic angular distribution in CM
 - Production: 3-body phase space
 - $K^{*0}(K_s^{0})$ decay: 2-body uniform distribution
 - Beam: 7.0, 8.0, 9.0, 10.0 GeV/c ($\sqrt{s} = 3.8-4.5$ GeV)
- Reconstruction: Invariant and missing mass
 - + K⁺(π^+) and $\pi^- \Rightarrow K^{*0}(K_s^{0})$ invariant mass
 - $K^{*0}(K_s^{\ 0})$ and $K^+ \Rightarrow \Omega^-$ missing mass

Acceptance: Missing mass measurement

- Acceptance (isotropic distribution): 30–50% (K*0) and ~30% (K_s^0)
 - In-flight decay of K and π are included.
 - \Rightarrow K^{*0} channel shows beam momentum dependence.
 - Similar acceptance for excited states

Missing mass resolution: $K^{-}\,p \rightarrow \Omega^{*-}\,K^{*0}\,K^{+}$

- Beam line: $\Delta p/p \sim 0.1\%$ (rms)
- E50 spectrometer: $\Delta p/p \sim 0.2\%$ (rms) @ 5 GeV/c
 - Effect of energy loss straggling by target: 2 MeV(rms)
- Missing mass resolution: 3–5 MeV(rms) (K*0) @ 7–10 GeV/c beam
- \Rightarrow Width (< 10 MeV) can directly be measured.

Missing mass resolution: K_s⁰ channel

- Beam line: Δp/p ~ 0.1%(rms)
- E50 spectrometer condition: $\Delta p/p \sim 0.2\%$ (rms) @ 5 GeV/c
 - Effect of energy loss straggling by target: 2 MeV(rms)
- Missing mass resolution: 3–5 MeV(rms) (K_s⁰) @ 7–10 GeV/c beam
- \Rightarrow Width (several 10 MeV) can directly be measured.

Yield estimation

Reaction mode	Beam [GeV/c]	σ _{ch} [μb]	B.R. (K ⁰ , K [*])	Beam [/spill]	Efficiency	Acceptance	Yield (100 days)
$K^{\!-}p \to \Omega^{*\!-}K^{0}_sK^{\scriptscriptstyle+}$	8.0	2.50	0.35	7 × 10 ⁶	0.66	0.28	$4.6 \times 10^{6} (4.6M)$
$K^{-}p \rightarrow \Omega^{*-}K_{s}^{\ 0}K^{+}$	10.0	3.50	0.35	7 × 10 ⁶	0.66	0.30	$6.4 \times 10^{6} (6.4 \mathrm{M})$
$K^{-}p \rightarrow \Omega^{*-}K^{*0}K^{+}$	8.0	0.063	0.67	7 × 10 ⁶	0.66	0.43	$3.3 \times 10^5 (330 \text{k})$
$K^{-}p \rightarrow \Omega^{*-}K^{*0}K^{+}$	10.0	0.088	0.67	7 × 10 ⁶	0.66	0.50	$4.6 \times 10^5 (460 \mathrm{k})$

• Estimate conditions

- σ_{ch} : σ_{Total} = 2.0, 2.5, 3.0, 3.5 µb (7, 8, 9, 10 GeV/c)
 - $\sigma_{K0} = \sigma_{Total} \times 1/1$
 - $\sigma_{K^*} = \sigma_{Total} \times 1/40$
- Branching ratios of K^{*0} and K_s⁰
- In-flight decay of scattered particle: K_s^{0} , K^+ , π^-
- Efficiency: Tracking(90%), PID(97%), DAQ(99%)
- $\Rightarrow \times #$ of particles = 3: $(0.90 \times 0.97)^3 \times 0.99 = 0.66$
- Target thickness: 4.0 g/cm² (E50 target)
- K10 beam intensity: 7×10⁶ /spill
- Spill/hour = ~692 (3600 sec/5.2 sec)
- Shift: 8 hours (30 days = 90 shifts)

Ω production at p_K-=4.15 GeV/c

KOがKs→π+π-だけかどうか不明(BR:69.2%)

• NPB142, 205(1978)

JAM (by Aoki)とコンシステント

Missing mass spectrum: Signal events (K⁻ p $\rightarrow \Omega^{*-}$ K^{*0} K⁺)

- Ω^{*-} states in PDG are generated.
- Roper-like state: $\Omega(2160)$, $\Gamma = 100$ MeV (assumed)
- Briet-Wigner type resonances

Measured Ω^{*-} states by PDG

		JP	Rating	Г [MeV]	→ ΞK (1)	$\rightarrow \Xi^* K$ (2)	→ ΞK [*] (3)	$\rightarrow \Xi K \pi$ (4)	$\rightarrow \Omega \pi \pi$ (5)	
Threadeald	Ω(2470)	??	2*	72 ±33					Seen	LASS (113M K ⁻ , 11 GeV/c) (290±90)/(5) nb
$\Xi^{0} K^{*-} 2109$	Ω(2380)	??	2*	26±23		< 0.44 to (4)	0.5±0.3 to (4)			Ξ Beam
$\Xi^{0*} K^{-} 2024$ $\Xi^{0} K^{-} \pi^{0} 1956$	Ω(2250)	??	3*	55±18		0.7±0.2 to (4)		Seen		Ξ Beam LASS (113M K ⁻ , 11 GeV/c) (630±180)/(2) nb
Ω π ⁰ π ⁰ 1942	Ω(2012)	?-	3*	6.4 ^{+2.5} -2.0 +- 1.6	1.2 ± 0.3 (= Ξ^0/Ξ^0)	< 0.119 /(1)				->Ξ*K dominant if Ξ*K mol?
$Ξ^{0} K^{-} 1811$ Ω π ⁰ 1807	Ω(g.s)	3/2+	4*	-						

- Most of spins/parities/decay branches have yet to be determined.
- $\Omega(2380)$ and $\Omega(2470)$ are discarded from PDG table.
- Roper-like state: $\Omega(2160)$, $\Gamma = 100$ MeV (assumed)

Sensitivity

• Smooth background case: Sensitivity (5 σ) ~1 nb for Γ = 100 MeV

Situations for background studies: K⁻ p reaction

- No good reference data for hadron beam of several GeV/c
- Estimation by hadron reaction generator
- \Rightarrow JAM (Jet AA Microscopic transport model)
 - Y. Nara et.al. Phys. Rev. C61 (2000) 024901
 - Include many elementary processes in low-high energy
 - Lund model also used by PYTHIA
- JAM results were checked by studies for charmed baryon spectroscopy.
 - π^- p reaction @ 20 GeV/c
 - No order difference from old data
 - Cross check with PYTHIA: Similar results
- \Rightarrow It can be used for estimation with factor differences.

Charged track multiplicity from JAM

of charged track $\pi^- p \rightarrow X @ 16 \text{ GeV/c}$

Track数	2T [mb]	4T [mb]	6T [mb]	8T [mb]	10T [mb]	Total [mb]
Data	9.78	9.02	4.85	1.37	0.2	25.22
JAM	8.03	8.81	6.17	1.42	0.08	24.51
PYTHIA	8.84	9.72	5.21	0.79	0.03	24.59

of charged track $\pi^- p \rightarrow \Lambda + X @ 15 \text{ GeV/c}$

Track数	2T [µb]	4T [µb]	6T [µb]	8T [µb]	10T [µb]	Total [µb]
Data	466	480	200	26.6	1.8	1174
JAM	363	482	155	9.00	0.02	1009
PYTHIA	509	549	127	5.84	0.05	1191

of charged track $\pi^- p \rightarrow K^0 + X @ 15 \text{ GeV/c}$

Track数	2T [µb]	4T [µb]	6T [µb]	8T [µb]	10T [µb]	Total [µb]
Data	714	787	266	45.2	2.4	1815
JAM	810	1069	345	23.8	0.2	2248
PYTHIA	960	1203	302	13.1	0.1	2478

- No K⁻ beam data ?
- No K⁺ multiplicity data ?

Choice of reactions

- $\Omega^{*-}(sss)$: $P_{K beam} = 7-10 \text{ GeV/c}$ • $\sqrt{s} = 3.8-4.5 \text{ GeV} \Rightarrow \text{Up to } 2.5-3.0 \text{ GeV/c}^2 \text{ excited states}$
- Background reactions w/ s = -2 production : $K^- + p \rightarrow "X" + K^+ + K^+ + \pi^-$
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 2 + \pi$ production $(+N^*, \Delta^*)$
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 2 + \pi$ from K^0/K^* decay
 - $(K^+ + K)/(K^+ + K^*)$ pair $\times 1 + \Xi$ production $+ \pi$ production
 - $(K^+ + K)/(K^+ + K^*)$ pair $\times 1 + \Xi$ production $+ \pi$ from $K^0/K^*/\Xi^*$ decay

•

- Background reactions w/ s = -1 production : $K^- + p \rightarrow "X" + K^+ + \pi^+ + \pi^-$
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 1 + \pi$ production $(+N^*, \Delta^*)$
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 1 + \pi$ from K^0/K^* decay
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 1 + K^- \rightarrow K^0$ exchange $+ \pi$ from K^0/K^* decay
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 1 + \Lambda/\Sigma$ production $+ \pi$ production
 - $(K^+ + K)/(K^+ + K^*)$ pair production $\times 1 + \Lambda/\Sigma$ production $+ \pi$ from $K^0/K^*/\Lambda^*/\Sigma^*$ decay
 - Ξ production + π production (π from Ξ^* decay)
 - Ξ production + π from Ξ^* decay

• • • • • • •

***** Expect good S/N by using s = -3 tagged reaction

Missing mass spectrum: Background events (K*0)

- Input $\Omega^{-}(\Delta M \sim 15 \text{ MeV }?)$ and other resonances(?) are reconstructed.
- Smooth background in the higher mass region

Missing mass spectrum: Background events (K_s⁰)

Strange shape by contribution from resonances ? (s≠-3 events)
 ⇒ Under investigation

Decay analysis: $\Omega^{*-} \rightarrow \Xi^0 + K^- \text{ mode } (B.R. = 0.3)$

- Decay events selection: 2.000 < $M_{\Omega*}$ < 2.025 GeV/c² and 1.30 < M_{Ξ} < 1.33 GeV/c²
- Both Ω^* and Ξ mass selection \Rightarrow Background is well reduced. (Distribution almost flat)

Background channels

- $\mathbf{K}^- + \mathbf{p} \rightarrow \mathbf{X}^{\mathbf{N}} + \mathbf{K}^+ + \mathbf{K}^+ + \pi^-$
- \Rightarrow Decay by tagging K⁻
 - Signal: Ω^- or Ω^{*-}
 - Ω^- Decay: $K^- + \Lambda$
 - $\mathbf{K}^- + \mathbf{\Xi}^0$
 - $K^{-} + \Xi^{*0}$
 - $K^- + \Xi^0 + \pi$: Mass = 1315 + 140 = 1455
 - $K^- + \Xi^0 + \pi \times 2$: Mass = 1315 + 280 = 1595
 - $K^- + \Lambda + K^0$: Mass = 1115 + 498 = 1613
 - $K^- + \Sigma^0 + K^0$: Mass = 1192 + 498 = 1690
 - $K^- + \Sigma^+ + K^-$: Mass = 1189 + 494 = 1683
 - $K^- + K + K + N$: Mass = 494 × 2 + 938 ~ 1930

Decay measurement: K⁻ detection background from JAM⁵⁷

 Analysis of JAM events ⇒ K⁻ decay mode from input resonance states and reactions

Decay measurement: K⁻ detection background from JAM

Analysis of JAM events ⇒ K⁻ decay mode from input resonance states and reactions
 ⇒ Under investigation

58

Requitements: Spectrometer for K10

- Forward dipole type magnet: Forward scattering due to fixed target
 - Acceptance for forward scattered particles
 - Wide angler coverage ($\theta < 45^\circ$) for both missing mass and decay measurement
 - Good momentum resolution for forwarded scattered particles with high-momentum
 - Δp/p ~0.2%(rms) level
 - Slow bending magnet system: Large size magnet pole and not so strong magnetic field
 - Detector configuration with effective coverage
- Detectors for spectrometer system
 - High-rate detectors for high-intensity K⁻ beam measurement
 - Good PID system with both good efficiency and no miss-identification
 - Multi-layer tracking system for measuring multi-track events
 - Large size detectors for covering widely scattered particles

***** Suitable one: Spectrometer for charmed baryon spectroscopy (J-PARC E50)

• New one will be designed based on E50 system. \Rightarrow Templary used for estimation

Excited states with heavy quark: Diquark

"Excited mode": λ and ρ modes in heavy baryon excited states (*q*-*q* + Q system) \Rightarrow Diquark correlation: *q*-*q* isolated and developed

Heavy flavors for revealing internal structure of baryons

- Effective degree of freedoms by internal motion of quarks
- \Rightarrow It is essential to understand baryon system.
 - Diquark correlation by charmed baryon
 E baryon, similar a generalation
 B High-momentum beam line
 - Ξ baryon: similar q-q correlation

***** Systematic studies for baryon systems with heavier flavors: *c* and *s*

 Ω baryon

Experiment: Missing mass technique

 $\begin{aligned} \pi^- + p &\rightarrow Y_c^{*+} + D^{*-} \text{ reaction } @ \ 20 \text{ GeV/c} \\ 1) \text{ Missing mass spectroscopy: } Y_c^{*+} \text{ mass (>1 GeV excited states)} \\ \bullet D^{*-} &\rightarrow \overline{D}^0 \ \pi_s^- \rightarrow K^+ \ \pi^- \ \pi_s^- : D^{*-} \rightarrow \overline{D}^0 \ \pi_s^- (67.7\%), \ \overline{D}^0 \rightarrow K^+ \ \pi^- (3.88\%) \end{aligned}$

2) Decay measurement: Absolute B.R. and angular distribution

• Decay particles (π^{\pm} & proton) from Y_c^*

63 High-momentum beam line for 2^{ndary} beam counts/mm [MHz ***** Beam measurement is essential. • High-intensity beam: > 1.0×10^7 Hz π (< 20 GeV/c) 0.8 • Unseparated beam: $\pi/K/p_{har}$ (PID by detector) 0.6 • High-resolution beam: $\Delta p/p \sim 0.1\%$ (rms) 0.4 Momentum dispersive optics method 0.2 -40 -60 -20 20 40 0 60 **Design Intensity** [/spill (5.2 sec)] @ 15 kW loss X hit position [mm] 1.0E+09Counting rate / 1 mm 1.0E+08• 6.0×10^7 /spill (30 MHz) π Several 10⁷ /spill р Size: 100 mm × 100 mm • 1.0E + 07**1 MHz/1 mm** @ 20 GeV/c π^+ 1.0E+06**K**-Several 10⁵ /spill **Reduced by collimator to** 1.0E + 05K⁺ Several 10⁷ /spill **p**_{bar} \Rightarrow Limit of detector operation 1.0E+048 10 12 18 20 and DAQ data transfer 2 4 6 14 16 0 [GeV/c]

Spectrometer system based on charmed baryon experiment

64