Status report

Shima Shimizu

29/June/2021

Analysis of 100 events

- ◆ NC, 18x275, Q²>100 GeV², after **detector simulation**
 - Run on 22/June. (Any recent update is not included.)
 - Using Ralf's analysis module (SIDIS), in order to fill the eta values of calorimeter clusters.
 - Default simulation:

Eta of calorimeter clusters are set to -10000, as they look for event vertex position, which are unavailable.

- Eta values are set with vertex=(0,0,0)
- Look into calorimeter clusters.
 - Matching to truth electron \rightarrow electron candidate
 - Kinematic reconstruction using calorimeter energies.

Truth distributions

- Based on HEPMC particle information.
- + γ_h is calculated from MC particles from all the proton side.
 - In QPM, γ_h corresponds to the polar angle of scattered quark.

Radiative photons (Truth)

• Some photons are quite hard.

Pre-selection based on truth particles

- This is to analyse events with good event property.
 - $\Sigma(E-p_z) > 25$ GeV, where sum runs over all the MC particles in -3.5< η <3.5.
 - 0.6 < p_T^{others}/p_T^{el} < 1.4, where "el" is for electron and "others" are for all other MC particles including radiative photons.

Electron matching to calorimeter clusters

- Calorimeter clusters in a (η, φ) cone of 0.1 from the truth electron are considered as electron candidates.
 - 7 events fails matching.
 - All of them have a radiated photon.
 - 2 events (θ =0.32, 1.54) have candidates but failed matching.
 - Others don't have good candidate clusters.

- A few events show large energy difference between the candidate and truth electron.
 - These events don't contain clusters with E>10 GeV, while $E_{e, truth}$ ~18 GeV.

Electron method vs true leptonic kin. variables

- Truth is taken from DJANGOH generator.
- Electron method is applied for found electron candidates, i.e. calorimeter clusters.
 - Not bad as a first trial. •

 $y_{el} = 1 - \frac{E'_e}{2E_e}(1 - \cos \theta_e) \qquad \begin{array}{l} \mathsf{E}_e: \text{ electron beam energy} \\ \mathsf{E}'_e: \text{ scattered electron energy} \\ \theta_e: \text{ scattered electron angle} \end{array}$

Hadron variables

Hadron side variables:

$$\delta_h = \sum_h (E - p_z)_i \quad p_{T,h} = \sqrt{\left(\sum_h (p_{x,i})\right)^2 + \left(\sum_h (p_{y,i})\right)^2}, \quad \cos \gamma_h = \frac{p_{T,h}^2 - \delta_h^2}{p_{T,h}^2 + \delta_h^2},$$

 Σ_h runs over all particles in the final state except the scattered electron.

- Reconstruction:
 - e.g. ZEUS experiment
 - $-\Sigma_h$ runs over calorimeter energy deposits, using calorimeter clusters.
 - Noise suppression \rightarrow Clustering \rightarrow Energy correction (e.g. DM)
 - "Backsplash" rejection: Rejection of secondary particles from a high energy particles hitting the forward CAL or beam pipe.
 - Invariant mass of the clusters are set to the pion mass
 - Today
 - Use all the calorimeter clusters, neglecting mass.
 - \rightarrow Will provide worst reconstruction. (Can be considered as poorest case.)

9

c2

Event properties

Balance between electron clusters and hadron clusters

Event properties

JB method vs true leptonic kin. variables

- Expected to have bad resolution.
- Bias is seen even for y.
 - Could be reconstructed δ_h is too small.
 - Need to improve how to use calorimeter clusters.

DA method vs true leptonic kin. variables

• DA method

 $(Q_{reco}^2 - Q_{true^{lep}}^2) / Q_{true^{lep}}^2 (DA_{CAL})$

dahca Q2diff

• Poor reconstruction of γ_h gives biased x_{DA} and y_{DA} .

Summary plot

Next step:

- Consider better treatment of calorimeter clusters.
 - Cluster mass
 - Rejection of noise clusters.
- Also learn how to make use of truth information of clusters.

Backup: HERA Kinematic plane

Electron method

Use E_e and $\theta_e \rightarrow$ Good at low x, low Q² Worse x determination at high x.

JB method

Use δ_h and $p_{T,h} \rightarrow$ Reasonable estimation at low y

DA method

Use θ_e and $\gamma_h \rightarrow$ Better at high Q² Worse at high y