A computationally universal phase of quantum matter

# **Robert Raussendorf, UBC**

joint work with D.-S. Wang, D.T. Stephen, C. Okay, and H.P. Nautrup

# The liquid phase of water



# A quantum phase of spins in 2D

... which supports universal quantum computation



We consider:

- Phases of unique ground states of spin Hamiltonians, at T = 0,
- In the presence of symmetry,
- In spatial dimension 2 (a lattice of spin 1/2 particles)

# A quantum phase of spins in 2D

... which supports universal quantum computation



We show: for measurement-based quantum computation,

- There exists a quantum phase of matter which is universal for quantum computation
- The computational power is *uniform* across the phase.



- 1. "Computational phases of quantum matter":
  - Our motivation
  - Background: SPT & MBQC
  - A short history of the question
- 2. A computationally universal phase of matter in 2D

### Motivation #1: MBQC and symmetry



Can MBQC schemes be classified by symmetry, in a similar way as, say, elementary particles can?

If so, does this have a bearing on quantum algorithms?

### Part I:

### Background on SPT & MBQC

### Symmetry-protected topological order



Two points in parameter space lie in the same SPT phase iff they can be connected by a path of Hamiltonians such that

- 1. At every point on the path, the corresponding Hamiltonian is invariant under G.
- 2. Along the path the energy gap never closes.

### **Measurement-based quantum computation**

### Unitary transformation



deterministic, reversible

### Projective measurement



probabilistic, irreversible

### **Measurement-based quantum computation**



measurement of Z ( $\odot$ ), X ( $\uparrow$ ),  $\cos \alpha X + \sin \alpha Y$  ( $\nearrow$ )

- Information written onto the resource state, processed and read out by one-qubit measurements only.
- Universal computational resources exist: cluster state, AKLT state.
- R. Raussendorf, H.-J. Briegel, Physical Review Letters 86, 5188 (2001).

# A quantum phase of spins in 2D

... which supports universal quantum computation



We show: for measurement-based quantum computation,

- There exists a quantum phase of matter which is universal for quantum computation
- The computational power is *uniform* across the phase.

A short history of

#### "computational phases of quantum matter"

# 1. Symmetry protects computation



we observe low-maintenance features of the ground-code MQC in that this computation is doable without an exact (classical) description of the resource ground state as well as without an initialization to a pure state. It





turns out these features are deeply intertwined with the physics of the 1D Haldane phase (cf. Fig. 1), that is well characterized as the symmetry-protected topological order in a modern perspective [6, 7]. We believe our approach must bring the study of MQC, conventionally based on the analysis of the model entangled states (e.g., [1, 8, 9]), much closer to the condensed matter physics, which is aimed to describe characteristic physics based on the Hamiltonian.

A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).

# 2. Symmetry-protected wire in MBQC



Else Schwartz Doherty Bartlett



- Computational wire persists throughout symmetry-protected phases in 1D.
- Imports group cohomology from the classification of SPT phases.

D.V. Else, I. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).

F. Pollmann *et al.*, PRB B 81, 064439 (2010); N. Schuch, D. Perez-Garcia, and I. Cirac, PRB 84, 165139 (2011); X. Chen, Z.-C. Gu, and X.-G. Wen, PRB 83, 035107 (2011).

# **3.** The SPT $\Rightarrow$ MBQC meat grinder



Hints at the classification of MBQC schemes by symmetry.

J. Miller and A. Miyake, Phys. Rev. Lett. 114, 120506 (2015) [first 1D comp. phase]. A. Prakash and T.-C. Wei, Phys. Rev. A (2016).

RR, A.Prakash, D.-S. Wang, T.-C.Wei, D.T. Stephen, Phys. Rev. A (2017).

The above waypoints are about 1D systems.



- MBQC in spatial dimension D maps to the circuit model in dimension D-1
- $\Rightarrow$  Require  $D \ge 2$  for universality.

Are there computationally universal quantum phases in two dimensions?

This talk describes one.

# Part II:

#### A computationally universal SPT phase in 2D

# **Description of the 2D phase & result**

• The symmetries of the phase are



• The 2D cluster state is inside the phase

**Result.** For a spin-1/2 lattice on a torus with circumferences n and Nn, with n even, all ground states in the 2D cluster phase, except a possible set of measure zero, are universal resources for measurement-based quantum computation on n/2 logical qubits.



Consider MBQC resource states as tensor networks

### **Cluster-like states**

... have PEPS tensors with the following symmetries



The cluster states have the additional symmetry



(We do not require the latter symmetry for cluster-like states)

# Splitting the problem into halves

Part A:

Lemma 1. All states in the 2D cluster phase are cluster-like.

Part B:

**Lemma 2.** All cluster-like states, except a set of measure zero, are universal for MBQC.

### **Part A: PEPS tensor symmetries**

The physical symmetries



in the 2D cluster phase imply the local PEPS tensor symmetries,



### Part B: Symmetry Lego

Now weave the PEPS tensor symmetries



into larger patterns.

# **B:** Cluster-like $\Rightarrow$ universal

#### The clock cycle:



- Every byproduct operator is mapped back to itself after n columns (n = circumference).
- $\Rightarrow$  If a gate can be done once, it can be done many times.



• Map 2D system to effective 1D system

### **B:** Cluster-like $\Rightarrow$ universal



Universal gate set on n/2 qubits

### **B:** Cluster-like $\Rightarrow$ universal

#### 2D cluster state:



Throughout the phase:

 $e^{i|\boldsymbol{\nu}|d\alpha Z_k}$   $e^{i|\boldsymbol{\nu}|d\alpha X_{k-1}Z_kX_{k+1}}$   $e^{i|\boldsymbol{\nu}|d\alpha X_k}$ 

### $| u| \leq 1$

( $\nu$  depends on the location in the phase)

About  $\nu$ : RR, A.Prakash, D.-S. Wang, T.-C.Wei, D.T. Stephen, Phys. Rev. A (2017).

### **Summary and outlook**

- There exists a symmetry-protected phase in 2D with uniform universal computational power for MBQC.
- Can we have a classification of MBQC schemes in 2D, based on symmetry?
- Symmetry Lego is fun—Try it!

PRL 122, 090501 (2019)
Related: Quantum 3, 162 (2019)



**Lemma 3. [\*]** Symmetric gapped ground states in the same SPT phase are connected by symmetric local quantum circuits of constant depth.

For any state  $|\Phi\rangle$  in the phase,

$$|\Phi\rangle = U_k U_{k-1} .. U_1 |2\mathsf{D} \text{ cluster}\rangle.$$

Look at an individual symmetry-respecting gate in the circuit,

$$U = \sum_{j} c_j T_j$$
, with  $T_j \in \mathcal{P}$ .

Which Pauli observables  $T_i$  can be admitted in the expansion?

[\*] X. Chen, Z.C. Gu, and X.G. Wen, Phys. Rev. B 82, 155138 (2010).

### A: In cluster phase $\Rightarrow$ cluster-like

Which Paulis  $T_j$  can be admitted in the expansion  $U = \sum_j c_j T_j$ ?



Which Paulis  $T_j$  can be admitted in the expansion  $U = \sum_j c_j T_j$ ?



Only X-type Pauli operators survive in the expansion.

#### Description of the local tensors:



• Local tensors  $A_{\Phi}$  describing  $|\Phi\rangle$  are invariant under the clusterlike symmetries.

# The parameter $\nu$

There is a complex-valued parameter  $\nu$ ,  $|\nu| \le 1$ , that needs to be known about the location of the resource state within the phase.



For infinitesimal angles  $d\beta$ , this results in a logical rotation [\*]  $e^{id\beta|\nu|T}$ , for some Pauli operator T. (E.g.,  $T = Z_k, X_k, X_{k-1}Z_kX_{k+1}$ ).

We require that  $\nu \neq 0$ .

[\*] RR, D.-S. Wang, A. Prakash, T.-C. Wei, D.T. Stephen, PRA 96 (2017).