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A quantum phase of spins in 2D

. Which supports universal quantum computation
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We consider:
e Phases of unique ground states of spin Hamiltonians, at T"' = O,
e In the presence of symmetry,
e In spatial dimension 2 (a lattice of spin 1/2 particles)



A quantum phase of spins in 2D

. Which supports universal quantum computation
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We show: for measurement-based quantum computation,

e | T here exists a quantum phase of matter which is uni-
versal for quantum computation

e [ he computational power is uniform across the phase.




Outline

1. “Computational phases of quantum matter’:
e Our motivation
e Background: SPT & MBQC

e A short history of the question

2. A computationally universal phase of matter in 2D



Motivation #1: MBQC and symmetry

quantum phases

quantum computation

Lie group of gates
for MBQC

Can MBQC schemes be classified by symmetry, in a similar way
as, say, elementary particles can?

If so, does this have a bearing on quantum algorithms?



Part I:

Background on SPT & MBQRC



Symmetry-protected topological order
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Two points in parameter space lie in the same SPT phase iff
they can be connected by a path of Hamiltonians such that

1. At every point on the path, the corresponding Hamiltonian is
invariant under G.

2. Along the path the energy gap never closes.



Measurement-based quantum computation

Unitary transformation Projective measurement
Z Z
P
X X
I-p
Y Y
deterministic, probabilistic,

reversible irreversible



Measurement-based quantum computation
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measurement of Z (®), X (1), cosa X +sinaY ()

e Information written onto the resource state, pro-
cessed and read out by one-qubit measurements only.

e Universal computational resources exist:
cluster state, AKLT state.

R. Raussendorf, H.-J. Briegel, Physical Review Letters 86, 5188 (2001).



A quantum phase of spins in 2D

. Which supports universal quantum computation
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We show: for measurement-based quantum computation,

e | T here exists a quantum phase of matter which is uni-
versal for quantum computation

e [ he computational power is uniform across the phase.




A short history of

“‘computational phases of quantum matter”



1. Symmetry protects computation

we observe low-maintenance features of the ground-code
MQC in that this computation is doable without an ex-
act (classical) description of the resource ground state
as well as without an initialization to a pure state. It

It

(T eatures are deeply intertwined with the
physics of the 1D Haldane phase (cf. Fig. 1), that is
well characterized as the symmmetry-protected topolog-
ical order in a modern perspective [6, 7]. We believe our
approach must bring the study of MQC, conventionally
based on the analysis of the model entangled states (e.g.,
[, 8, 9]), much closer to the condensed matter physics,
which 1s aimed to describe characteristic physics based
on the Hamiltonian.

A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).



2. Symmetry-protected wire in MBQC
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Else

e Computational wire persists throughout symmetry-protected
phases in 1D.

e Imports group cohomology from the classification of SPT
phases.

D.V. Else, I. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).

F. Pollmann et al., PRB B 81, 064439 (2010); N. Schuch, D. Perez-Garcia, and I. Cirac,
PRB 84, 165139 (2011); X. Chen, Z.-C. Gu, and X.-G. Wen, PRB 83, 035107 (2011).



3. The SPT=MBQC meat grinder

quantum phases

quantum computation | ,‘

Lie group of gates
for MBQC

Hints at the classification of MBQC schemes by symmetry.

J. Miller and A. Miyake, Phys. Rev. Lett. 114, 120506 (2015) [first 1D comp. phase].

A. Prakash and T.-C. Wei, Phys. Rev. A (2016).
RR, A.Prakash, D.-S. Wang, T.-C.Wei, D.T. Stephen, Phys. Rev. A (2017).



Inspection

The above waypoints are about 1D systems.

1D is not sufficient for universal MBQC

here is why:
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e MBQC in spatial dimension D maps to the circuit model
in dimension D — 1

= Require D > 2 for universality.



Are there

computationally universal
quantum phases

in two dimensions?

This talk describes one.



Part II:

A computationally universal SPT phase in 2D



Description of the 2D phase & result

e [ he symmetries of the phase are

e [ he 2D cluster state is inside the phase

Result. For a spin-1/2 lattice on a torus with circumferences n
and Nn, with n even, all ground states in the 2D cluster phase,
except a possible set of measure zero, are universal resources for
measurement-based quantum computation on n/2 logical qubits.
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BQC resource states as tensor net



Cluster-like states

. have PEPS tensors with the following symmetries
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The cluster states have the additional symmetry
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(We do not require the latter symmetry for cluster-like states)




Splitting the problem into halves

Part A:

Lemma 1. All states in the 2D cluster phase are cluster-like.

Part B:

Lemma 2. All cluster-like states, except a set of measure zero,
are universal for MBQC.




Part A: PEPS tensor symmetries

The physical symmetries

in the 2D cluster phase imply the local PEPS tensor symmetries,
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Part B: Symmetry Ledgo

Now weave the PEPS tensor symmetries

into larger patterns.

Z

N

Z

a




B: Cluster-like = universal

The clock cycle:
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circuit model time

e Every byproduct operator is mapped back to itself after n
columns (n = circumference).

= If a gate can be done once,

it can be done many times.



B: Cluster-like = universal
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quasi-1D locality 2D-locality (measurement)

(clock cycle)

e Map 2D system to effective 1D system




B: Cluster-like = universal
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eida Xk:

6idOé Xk_]_Zka_|_1

eid(){ Zk:

Universal gate set on n/2 qubits




B: Cluster-like = universal

2D cluster state:

eida Zy, eida Xp—12Xg+41 eidoz X
Throughout the phase:
ctlv|da Zy, ez’|1/|dosz_1Zka_|_1 etlv|da Xy,
v <1

(v depends on the location in the phase)

About v: RR, A.Prakash, D.-S. Wang, T.-C.Wei, D.T. Stephen, Phys. Rev. A (2017).



Summary and outlook
]

e [ here exists a symmetry-protected phase in 2D with uniform
universal computational power for MBQC.

e Can we have a classification of MBQC schemes in 2D, based
on symmetry?

e Symmetry Lego is fun—Try itl!

PRL 122, 090501 (2019)
Related: Quantum 3, 162 (2019)




A': In cluster phase = cluster-like

Lemma 3. [*] Symmetric gapped ground states in the same
SPT phase are connected by symmetric local quantum circuits
of constant depth.
For any state |®) in the phase,
|P) = U, Up_1..Uq |2D cluster).
Look at an individual symmetry-respecting gate in the circuit,
U=> ¢;T;, with T € P.
J

Which Pauli observables Tj can be admitted in the expansion?

[*] X. Chen, Z.C. Gu, and X.G. Wen, Phys. Rev. B 82, 155138 (2010).



A': In cluster phase = cluster-like

Which Paulis T; can be admitted in the expansion U = }_;¢;1;7




A': In cluster phase = cluster-like

Which Paulis Tj can be admitted in the expansion U = Zj chj?

multiply by non-local

Z

_ ZXZ
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Only X-type Pauli operators survive in the expansion.



Description of the local tensors:
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e Local tensors Ay describing |®) are invariant under the cluster-
like symmetries.



T he parameter v

There is a complex-valued parameter v, |v| < 1, that needs to be
known about the location of the resource state within the phase.

df

Deviate from protected basis

For infinitesimal angles dj3, this results in a logical rotation [*]
6id[5’|1/\T

for some Pauli operator T. (E.g9., T = Zy, Xy, X123 Xp41)-

We require that v # 0.

[*] RR, D.-S. Wang, A. Prakash, T.-C. Wei, D.T. Stephen, PRA 96 (2017).



