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Problem and related works

Solve the Schrodinger equation

e, - h® O? _
zha\lf(x,t) = | 2maa? | V(x,t)_ U(x,t)

Can use {qubits} per lattice site (sol. is diag. in comp. basis, but expensive)
Phys. Rev. D 103, 016008 (2021)

Can use qubits to label positions on the lattice (exponentially less qubits)
arXiv: 2101.05821

In 2101.05821, the authors present a circuit QC algorithm.
In each trotter step, a QFT and inverse-QFT is performed.
The Laplacian and potential are diagonal in the respective spaces.

In this context, we present a new algorithm suitable for adiabatic guantum
computing.



Adiabatic QC and quantum annealing

H(t) = A(t)Hy + B(t)H;
Solve eigenstate of final Hamiltonian by adiabatically evolving from initial H.
Hamiltonian are expressed as k-local (A-body) spin operators
H=0"®0c” :J()Zalz

Quantum annealing restricts Hamiltonians to 2-local transverse Ising Model

=ZJ-X Zha —|—2sz0 0

1>
Initial ground state Is the maximal superposmon state

W(0) = (1) + 4"

Quantum annealing sets are our algorithm design considerations



Schrodinger equation w/ real potentials
V2 + V(z,t)] ¥(z,t)
Let us consider first time-independent real potentials.

Discretize the equation (e.g. with a periodic square well for now)
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Schrodinger equation w/ real potentials
V2 + V(z,t)] ¥(z,t)
Let us consider first time-independent real potentials.

Discretize the equation (e.g. with a periodic square well for now)
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This is a 3-qubit example (23 lattice sites in 1D)



Schrodinger equation w/ real potentials
V2 + V(z,t)] ¥(z,t)
Let us consider first time-independent real potentials.

Discretize the equation (e.g. with a periodic square well for now)
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This is a 3-qubit example (223 lattice sites in 1D)
Periodic boundary conditions



Schrodinger equation w/ real potentials
V2 + V(z,t)] U(x,t)

Let us consider first time-independent real potentials.

Discretize the equation (e.g. with a periodic square well for now)
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This is a 3-qubit example (23 lattice sites in 1D) Drop -2 global identity
Periodic boundary conditions (constant energy shift)

Vif(@) = flz+ 1)+ flz — 1) —(2f(2)



Schrodinger equation w/ real potentials

V2 + V(z,t)] U(x,t)

Let us consider first time-independent real potentials.

Discretize the equation (e.g. with a periodic square well for now)

(o -1 0 0 0 0 0 —1\ ( ' )
1 0 -1 0 0 0 0 0 0 1
0 -1 0 -1 0 0 0 0 0 0
0 0 -1 0 -1 0 0 0 0 0
0 0 0 -1 0 -1 0 olT] o o
o 0 0 0 -1 0 -1 0 0 0
o 0 0 0 0 -1 0 -1 0 0
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This is a 3-qubit example (23 lattice sites in 1D)
Periodic boundary conditions
Real potentials can be encoded entirely on the diagonal



Qubit mapping e R

0
0
Solution in general is a superposition in 8
the computational basis | -1




—10 -1 0 0 0 0 0 —1\

- - -1 —-10 -1 0 0 0 0 0
Qubit mapping T B
0 0 -1 —-10 -1 O 0 0

0 0 0 —1 10 —1 O 0

Solution in general is a superposition in 8 8 8 8 —01 iol I& _01
the computational basis -1 0 0 0 0 0 -1 10/

Qubits in the computational basis map to
position in binary

Ll4=1000 =0
1= 001 =1

11+1= 010 = 2




Qubit mapping

Solution in general is a superposition in
the computational basis

Qubits in the computational basis map to
position in binary

Amplitude maps to value of the wave
function at the given position
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Qubit mapping

Solution in general is a superposition in
the computational basis

Qubits in the computational basis map to
position in binary

Amplitude maps to value of the wave
function at the given position

Eigenvalue is the energy of the state

W (1)
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Mapping the Laplacian to spin models

We want an efficient mapping to qubits
Space complexity improvements

» Exponential number of lattice sites
» Polynomial number of terms in the Hamiltonian
» Fixed Pauli weight

» Small Pauli support

Time complexity improvements

» Polynomial time to recover ground-state wavefunction

j

Achieved by
efficient mapping
to spin models

Achieved by
knowing the
“general enough”
spectral gap of H(s)



Binary encoding of the Laplacian

| will talk more in detail about mapping of the kinetic energy operator

0? 1
V) 3
5.2 ()

" V(r+a)+VY(r—a)—2V(x)



Binary encoding of the Laplacian

| will talk more in detail about mapping of the kinetic energy operator

82

W ()

1

Ox?

a2

V(r+a)+VY(r—a)—2V(x)

A natural choice of a 1D lattice (with 8 sites) is labelled as

S
N

O(1 1213|4567

o 1 0 O 0 0 0 1

1 01 0 0 0 0 0O

O 1 0 1 0 O 0 O

0 01 01 0 0O 2 5 Yielding the following
0O 0O 0O1 0 1 0 O a2 discrete derivative
O 0 0 O 1 0 1 0 o
00000T10 1 oSS of oneraity

1 0 0 0 0 0 1 0O



Binary encoding of the Laplacian

0(1(2(3]4]5|6]|7
o1 0 0 0 0 0 1
I 01 0 0 0 0 0
o 1 0 1 0 0 0 O
o 0 1 0 1 0 0 O
o 0 0 1 0 1 0 0
o 0 0 O 1 0 1 O
o 0 0 0 0 1 0 1
1 00 0 0 0 1 0

For this 3 qubit example

0 — 000
1 — 001
2 — 010
3 — 011
4 — 100
5 — 101
60— 110
7 — 111



Binary encoding of the Laplacian

0123|4567 For this 3 qubit example

S U = 000 1 bit difference

1 01 0 0 0 0 0 1 — 001 o

01 0 1 0 0 0 0 5 5 010 2 bit difference

0 01 01 0 0 0 2 011 1 bit difference

0 001 01 0 O 41— 100 3 bit difference

0 0001 0 1 0 5 101 1 bit difference

0 00O 0O 1 01 6 — 110 2 bit difference

1 00 0 0 0 1 0 7 v 111 1 bit difference

The mapping of qubits to Interactions between spins to

lattice site is complicated — accomplish this is complicated
(but still has a pattern) (but still generalizable to A spins)
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Binary encoding of the Laplacian
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Binary encoding of the Laplacian

Space complexity improvements

» Exponential number of lattice sites - Yes!
* Polynomial number of terms in the Hamiltonian - Yes!
» Fixed Pauli weight - Grows as order A

» Small Pauli support - Requires all 3 Pauli matrices and their products

We have “exponential space” improvement in a very restricted sense

Realistically this is not going to be realized any time soon (50 years? Never?)



Laplacian in binary reflected Gray code

Binary reflected Gray code definition

S oHen BRGC |
IS an alternative
(1) : 88(1) g) : 88(1) mapping of a bit-string
to an integer
2 — 010 2 — 011
3 — 011 3 — 010 The binary bit-string is
4 — 100 4 — 110 also the base-2 integer
o — 101 5 3111 | |
6 — 110 6 — 101 But any 1:1 mapping Is a
7 — 111 7 100 valid representation



Binary

0 — 000
1 — 001
2 — 010
3 — 011
4 — 100
5 — 101
6 — 110
T — 111

BRGC

0 — 000
1 — 001
2 — 011
3 — 010
4 — 110
b — 111
60 — 101
7 — 100

Laplacian in binary reflected Gray code

Karnaugh Map for BRGC

Visual way to see a valid Gray code

00 | 01 | 11 | 10

NS




Laplacian in binary reflected Gray code

Binary

0 — 000
1 — 001
2 — 010
3 — 011
4 — 100
5 — 101
60— 110
7 — 111

BRGC

0 — 000
1 — 001
2 — 011
3 — 010
4 — 110
5 — 111
6 — 101
7 — 100

) [0 1
I:ZU;‘B:I 1 0
— ! 3110

" L0 1

One way to visualize the simplification

1. Label site with bit-string
2. Convert to Int in BRGC
3. Reorder in increasing Int values

000110 11

0 1 0

0

3 2
0 1 0 0
0 1 brgc 1 1
0 1 0
L 0 1

>
to bin 2

3

1 2
L 0
0 1
L 0
0 1

2

Maps transverse Hamiltonian to Laplacian
In the case of A=2
(previously we needed oxox as well)



binary reflected Gray code
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Laplacian in binary reflected Gray code

Space complexity improvements

» Exponential number of lattice sites - Yes!

* Polynomial number of terms in the Hamiltonian - Yes!

» Fixed Pauli weight - Yes! (XZn is polynomially reducible to XZ and ZZ)
» Small Pauli support - Yes! (Only need X, XZ, and ZZ2)

We have exponential space improvement

This can possible be realized much sooner



Hamming distance 2 Gray code

How do we further reduce the complexity of the spin model?

Instead of X, XZ and ZZ, we want just X, Zand ZZ

In other words...

Can we map the Schrodinger equation to

Transverse Ising model in polynomial number of qubits?



Hamming distance 2 Gray code

Why does BRGC need an XZ coupling?

00 | Ol

11

10

o

Adjacent lattice sites are 1 bit different
(Hamming distance = 1)

Pauli X will yield derivatives to both
XZ eliminates unwanted derivatives

Why not use a Gray code where non-adjacent codes are >= 2 bit different



Hamming distance 2 Gray code

4 qubits H2GC Karnaugh map

A

al 0

3,2
00

01

11

10

00

01

11

10

a

U

~
Y

>

Only works with 2N qubits

If bit-strings are nulled

we can shake a path through wheren
non-adjacent site have
a Hamming distance of 2

Only Pauli X + Z and ZZ are needed



----------------------- 47
g o 1
H2GC L, .00 01 11 10 00 01 11 10
3,2
6 qubit construction F U ------- e U
01 o o ‘.
The basic path is copied to a 0 T R
layer that is separated by a drill- 1 o | ]
through layer S —— T
V][O ][O
L a
Has 24/2*1 valid sites ’
Exponential in number of qubits .- /\
01 . ,'i | E ,’ \, U
The penalty terms are always at A CE . . i.
most a 3-body interaction e ; o
10 Q' P U D




Hamming distance 2 Gray code

Space complexity improvements

» Exponential number of lattice sites - Yes!

* Polynomial number of terms in the Hamiltonian - Yes!
» Fixed Pauli weight - Yes!

- Small Pauli support - Yes! (Only need X, Z, and Z2)
We have exponential space improvement

Can (almost) be implemented today!



D-dimension and A-body extension

D-dimensions is straightforward
A-particles is the same for Boltzmann statistics (molecule simulations for now)

Reflected Gray code
1D A="1

00
01
11
10

Reflected Gray code

2D A=1 or 1D A=2

0000
0001
0011
0010

0100
0101
0111
0110

1100
1101
1111
1110

1000
1001
1011
1010

Nested Gray code

Qubit scaling is
DA log(sites/dim)



Mapping real potentials to Ising Model

Next | will focus on mapping arbitrary real potentials to k-local Ising Model

1.0 N —e— Average
N -== Decimation
'\ B k=2
0.5 “‘ . k=4
\‘
> 0.0t
\
\
—0.5} AN
\
RN
N\
_1'0_ | | = | |
0.0 0.2 0.4 0.6 0.8 1.0



Walsh series

The Walsh functions can be organized % (1)
with respect to sequency. 1=

= 0

Has even/odd modes. .

Free of Gibbs phenomena. = 0

—1 -

= 0

—1 -

= 0

s 2]

0.0

0.2

0.4

0.6

0.8

1.0




Adiabatic evolution

Start from free field and adiabatically turn on potential.
(basically textbook adiabatic theorem of quantum mechanics)

H(t) = Hy + B(t)Hy

The ground state of the Laplacian is identical to transverse field Hamiltonian.
(this is the zero-frequency state)

W(0) = (1) + 4) "



100

Adiabatic evolution = |
Integrate the time-dependent =
schrodinger equation to simulate the ~—200-
schrodinger equation... at least until = %0
there is a suitable AQC. %

We have parallelized GPU code to |

simulate up to 20+ qubits.

1.0+

Gap of the spectrum for initial state
preparation will typically be simple.

N
T
N

—

~— 0.6 1

Probability converges to 1 as expected. =
>

0.2 -

0.0 -
0.0

e

Energy spectrum

/ IR cutoff

- N\

0.0

0.8 -

0.4 -

0.5 1.5

Probability of observing
final ground state

0.2 0.4 0.6 0.8 1.0



Deuteron binding energy
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Discretize potential Obtain binding energy with adiabatic

evolution



Some final thoughts

We have mapped the Schrodinger equation to spin models

Given that
1) The potential can (at some point) be coarse grained

2) There isn’t any fine-tuning in the potential such that the first excited-state is
abnormally gapped from the ground-state

Then the Schrodinger equation is polynomially mapping in both space and time
complexity to the XZ and Transverse Ising model
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Rademacher functions

There Is a class of orthogonal functions which are analogous to sin and cos

The Rademacher functions are the basic building blocks

R,, = signsin (2”“7715)

1 000 0O 0 O

01 00 0 0 O

Discrete Rademacher is exactly the 6010 0 0 0
diagonal elements of the 1-local Folel=|Y 00 1 0 0 0
Ising Model 6- 6060 -1 0 O
0000 0 -1 0

0000 0 0 -1

R, = co” 0000 0 0 0

n

o O OO O O O



Rademacher functions

There Is a class of orthogonal functions which are analogous to sin and cos

The Rademacher functions are the basic building blocks

141 ® @ @ @
R,, = signsin (2”“7715) O .
: : —1 - e o e e
Discrete Rademacher Is exactly the 7 *—* R
diagonal elements of the 1-local - ° o
Ising Model
—1 - [ o ® ®
14 @ ® * [
R, =o” i
0 o 05

A qubit system has A Rademachers || “ . . e

0.0 0.2 0.4 0.6 0.8 1.0



Walsh functions

A qubits has 2A dimensional Hilbert-space. Need more basis states.

The complete orthonormal functions are the 2A Walsh functions.

Walsh functions are related to Rademacher functions by binary representation
1—001 . W,=R;=o0f

2010 .. Wy=Ry =07
3 — 011 WgZRle :O'le'OZ

And Is a bijective map to the complete set of k-local Ising-like Hamiltonians



Fast Walsh Transform to get coeff.
with N log(N) complexity

However, for A qubits, N = 2A

Coarse-grain potential before FWT.

Decimation coarse-graining as a
cheap alternative.

Setup complexity is now negligible
given “well-behaved” potentials.

Decimation coarse-graining

1.0

0.5

~ 0.0t

—0.51

—1.0f
0.0

—&— Average

K = 2

K =4

Decimation

0.2

0.8 1.0




Potential construction summary

If we can coarse grain the potential

Then the (classical) time complexity of setting up the problem can be
exponentially reduced

This Is of course application dependent



Harmonic Oscillator with H2GC
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Time dependence of coefficients Wavefunction at different points in time



H2GC penalty term challenges

Q=1000xU
29 _T\-\\ ----- Exact gap
11y IR cutoft
1 —— 10000x U
. ‘l \ - - - 1000x U
% ‘ \‘\ ......... 100x U
10- | \ —— 10x U

Gap is typically protected by the IR The slope of the spectrum requires us to
cutoff slow down



