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Quantum state tomography

Given an unknown qubit state, how do we learn what it is?

Reconstruct it by taking an informationally complete set of
measurements.

Measure:
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σz =

(
1 0
0 −1
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Quantum process tomography

How can we learn what an unknown quantum process is doing?

Reconstruct an operation based on how it acts on known states.

(Example: a unitary operation on a single qubit.)
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QCVV: quantum characterization, verification, and validation

In the age of noisy quantum computers, it is important to
characterize the behaviour of our quantum hardware.

Traditional quantum state and process tomography are done with
very strong underlying assumptions:

state tomography assumes measurements are perfect

process tomography assumes initial state preparation and
measurements are perfect

But in real physical systems, State Preparation And Measurement
(SPAM) are also noisy processes!
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Gate set tomography (GST)

Treat everything we can do to our quantum system equally. State
preparation, operations, and measurement are ‘buttons’ that we
can push to act on our quantum system.

We want to learn what all of the buttons do.

Merkel, S. T., et al. (2013). Self-consistent quantum process tomography. Physical Review A, 87(6).

Blume-Kohout, R., Gamble, J. K., Nielsen, E., Mizrahi, J., Sterk, J. D., & Maunz, P. (2013). Robust,
self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit.
http://arxiv.org/abs/1310.4492

http://arxiv.org/abs/1310.4492


Gate set tomography (GST)

Mathematically, we represent every button as a superoperator - our
initial task will be to learn their contents.

|ρ〉〉 =
(
∗ ∗ ∗ ∗

)T
|E 〉〉 =

(
∗ ∗ ∗ ∗

)T
G1 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


G2 = ...

Assumption: buttons have the same action any time they are pressed.



Learning the superoperators

How?

By pushing a series of buttons
chosen in a clever way.

We can reconstruct the
superoperators by using the
outcome frequencies from a
variety of experiments.



Learning the superoperators

Given an experiment, e.g.,

The probability that the light turns on is

〈〈E |G3G1G2G1|ρ〉〉 = Tr (|ρ〉〉〈〈E |G3G1G2G1)

where Gi , |ρ〉〉, and |E 〉〉 are superoperators of the buttons.

If you know the superoperators, you can predict the outcome
probabilities for any experiment on the system.



Learning the superoperators

Transforming all superoperators by the same linear transformation
B (a gauge transformation) results in the same probabilities:

Tr (|ρ〉〉〈〈E |G3G1G2G1) =

Tr
(
B−1|ρ〉〉〈〈E |BB−1G3BB

−1G1BB
−1G2BB

−1G1B
)

The transformation B is not accessible experimentally! We learn
one possible set from the gauge orbit of potential superoperators.
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Dealing with gauge freedom in gate set tomography

Option 1: Gauge-fixing.

Run a computational procedure to find a B that makes your
superoperators close to what you think they should be.

Issues:

May be computationally costly

Requires assumptions about the action of the buttons

Option 2: Work with gauge-independent quantities instead.

Build a model that characterizes the system based on experimental
outcome probabilities directly: operational quantum tomography.
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Operational Quantum Tomography

Use Bayesian inference to learn a finite set of gauge-independent
model parameters called the operational representation.

Bayes' rule

Prior distribution Posterior distribution

True operational 
representation

Hypothetical 
operational 

representations

These model parameters are related to the outcome probabilities of
a small set of fiducial experiments.



Fiducial experiments

Fiducial experiments, or fiducial
sequences, are short sequences of
only one or two button presses
that gives us a point of reference.

The set of fiducial sequences
must be informationally complete
(more on this in a minute!)



An operational representation

Let Fi represent fiducial experiments. Use them to construct:

Ẽi = 〈〈E |Fi |ρ〉〉
F̃ij = 〈〈E |FiFj |ρ〉〉

G̃
(k)
ij = 〈〈E |FiGkFj |ρ〉〉

These quantities are gauge-independent, and can be used to
compute the same probabilities as the superoperators. For a
sequence of button presses s,

Tr (|ρ〉〉〈〈E |Gsk · · ·Gs1)

= Tr
(
F̃−1Ẽ · ẼT · F̃−1G̃ (sk ) · F̃−1G̃ (sk−1) · · · F̃−1G̃ (s1)

)
If we can learn Ẽ , F̃ , and G̃ (k), we can predict the outcome of any
future experiment – we call them the operational representation.



Example: OQT for Ramsey interferometry

We can use OQT to perform Ramsey
interferometry and learn the Rabi
oscillation frequency of a qubit.

In this framework Ramsey interferometry experiments look like:

. . .



OQT for Ramsey interferometry

Steps for performing Ramsey interferometry using OQT:

1. Choose a prior distribution for what we think the operational
representation should look like.

It’s not obvious what properties arbitrary operational
representations should have, except all values are ∈ [0, 1].

Instead, we choose a prior over the superoperators, e.g.

Rx

(π
2

)
→ Rx

(π
2

+ ε
)
, ε ∈ N (0, σ2)

and use these to later convert to the gauge-independent form.
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OQT for Ramsey interferometry

2. Choose a set of fiducial experiments.1

We chose:

An ‘empty’ fiducial indicates an experiment where we perform
only SPAM.

1Choice of fiducials must yield invertible F̃ , where F̃ij = 〈〈E |FiFj |ρ〉〉.



OQT for Ramsey interferometry

3. Initialize a particle cloud with many hypothetical operational
representations.

Sample superoperators from their priors. In this example, we
initialize a cloud of 10000 particles with prior assumptions:

State preparation creates a depolarized2 |0〉 with p ∈ U(0, 0.1)

Measurement is a depolarized |0〉 with p ∈ U(0, 0.1)
Rx(π

2 ) pulled from Rx(π
2 + ε), ε ∈ N (0, 10−3)

∆t pulled from Rz(ω · dt), ω ∈ U(0, 1), dt = 1

Use samples to analytically compute hypothetical (Ẽ , F̃ , G̃ (k)).

2The depolarizing channel sends ρ→ (1− p)ρ + p
3

(XρX + Y ρY + ZρZ)
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OQT for Ramsey interferometry

4. Perform Bayesian inference

Using either true experimental data, or simulated data,
perform a series of experiments of the following form:

...

We performed simulated experiments with a ‘true’ gateset
sampled from our prior.

Perform Ramsey experiments consisting of n presses of ∆t, n
from 2 to 50, and update the particle cloud of hypothetical
operational representations according to Bayes’ rule3.

3We used Sequential Monte Carlo techniques to do this.



OQT for Ramsey interferometry

5. Assess the quality of our reconstruction.

We use a prediction loss: for true probability ps and mean
posterior probability p̂s , the loss is given by

Loss(ps , p̂s) = (p̂s − ps)2
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OQT for Ramsey interferometry

Why is this interesting?

Ramsey interferometry is not something that can be addressed
using standard GST techniques.

We find in general that OQT is applicable to a broad array of
characterization tasks.

So far we have also successfully performed:

Quantum state tomography

Quantum process tomography (with simulated and real data)

Randomized benchmarking



OQT for Ramsey interferometry

Why is this interesting?

Ramsey interferometry is not something that can be addressed
using standard GST techniques.

We find in general that OQT is applicable to a broad array of
characterization tasks.

So far we have also successfully performed:

Quantum state tomography

Quantum process tomography (with simulated and real data)

Randomized benchmarking



OQT for Ramsey interferometry

Why is this interesting?

Ramsey interferometry is not something that can be addressed
using standard GST techniques.

We find in general that OQT is applicable to a broad array of
characterization tasks.

So far we have also successfully performed:

Quantum state tomography

Quantum process tomography (with simulated and real data)

Randomized benchmarking



OQT for Ramsey interferometry

Why is this interesting?

Ramsey interferometry is not something that can be addressed
using standard GST techniques.

We find in general that OQT is applicable to a broad array of
characterization tasks.

So far we have also successfully performed:

Quantum state tomography

Quantum process tomography (with simulated and real data)

Randomized benchmarking



OQT for experimental trapped-ion qubit data

Use data from long-sequence
GST experiments on a
trapped-ion qubit.
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Experiment

OQT is competitive with existing techniques!

Experimental data: Blume-Kohout, R., Gamble, J. K., Nielsen, E., Rudinger, K., Mizrahi, J., Fortier, K., & Maunz,
P. (2017). Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography.
Nature Communications, 8, 14485.



Randomized benchmarking

Use OQT to learn H and S (and SPAM) and perform randomized
benchmarking.
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OQT provides posterior distribution, enabling deeper analysis.



Conclusions and future work

Operational quantum tomography enables us to characterize and
learn about a wide variety of quantum systems.

Learning the operational representation allows us to predict the
outcome of future experiments in a way that overcomes the
gauge-related challenges in other procedures.

Next steps for OQT:

Scaling up to multi-qubit systems, and multi-state and
multi-measurement cases

More sophisticated noise models (e.g., how to consider
non-Markovianity?)

Take it to the lab! Characterize in-house hardware at UBC.
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