Engineering long coherence times of spin-orbit qubits in 28Si

Asst. Prof. J. Salfi

Dept of Electrical and Computer Eng. The University of British Columbia

RIKEN/Vancouver Joint Workshop

August 24, 2021

Kobayashi, **Salfi**, van der Heijden, Chua, Culcer, House, Johnson, McCallum, Riemann, Abrosimov, Becker, Pohl, Simmons, Rogge, Nature Materials, 20, 38-42 (2021)

Wang, Marcellina, Hamilton, Cullen, Rogge, **Salfi**, Culcer, Nature Partner Journals: Quantum Information, 7, 1-8 (2021)

Electrical and

Computer

Engineering

Electron Spin Qubits in Silicon

What is special about 28Si?

Solid-state host with very long coherence times "Atoms in a semiconductor vacuum"

Donor ensembles Single donor $T_2 \sim 10 \text{ ms to } 100 \text{ ms}$ $T_2 \sim 100 \text{ ms}$

THE UNIVERSITY OF BRITISH **COLUMBIA**

Muhonen et al. Nature Nano, 2014

Single quantum dot $T_2 \sim 30 \text{ ms}$

Veldhorst et al. Nature Nano, 2014

Electron Spin Qubits in Silicon

Muhonen et al Nature 2014

Veldhorst et al Nature Nano 2014

Donor qubit measurement (spin to charge conversion) $e = 2 \times 10^{-3}$ Watson et al, Science Advances, 2016

Donor single qubit gates (magnetic resonance) Dehollain et al NJP 2016

 $e = 5 \times 10^{-4}$

 $e = 2 \times 10^{-2}$

Two-qubit gates (exchange interaction) Huang et al Nature 2019

Electron Spin Qubits in Silicon

Summary: Small, clean qubits, manufacturable

Challenges with short-range interactions: electric noise (isotropic), cross-talk, density, range: ~20 nm (donor), ~100 nm (electron QD)
 Additional challenge: Valley degree of freedom of electrons

Salfi et al Nature Materials 2014

in the second

Desiderata

Desiderata

Maintain long coherence time of spin qubits in ²⁸Si Build long-range noise-insensitive multi-qubit gates

- I. Capacitive interactions
- 2. Quantum electrodynamics (Q.E.D.) with microwave photons [or acoustic phonons]

How to accomplish this?

Enable electric control [or elastic control] for spin Without spoiling coherence

Why is this hard?

Si electron spin has weak intrinsic coupling to electric fields Electric coupling is normally associated with fast decoherence

Electric Control

Artificial electric dipole: E(t) moves electron x(t), B(x(t)) from magnet

First demonstrated in GaAs [1] Later shown for electrons in Si [2-5]

[1] Pioro-Ladrière et al NPhys. 2008 [3] Mi et al Nature 2018 [5] Yoneda et al, NNano 2018
[2] Kawakami et al NNano. 2014 [4] Samkharadze et al Science 2018

Intrinsic electric dipole: Electric field E(t) moves electron, and it experiences time-varying B(t) [special relativity] Thomas, Nature 1926

Strong spin decoherence [6-10] $T_2 \sim 0.1$ to 1 μ s For electrons in Si, the effect is far too weak

[6] Nowack et al Science 2007[7] Nadj-Perge et al Nature 2010

[8] Maurand NComm 2016 [9] Watsinger NComm 2018 [10] Hendrickx, arxiv:1904.11443

Electrical and

Computer

Engineering

Existential Question

Question: Is 1 μ s coherence time the best we can do with intrinsic spin orbit?

Existential Question

Question: Is 1 μ s coherence time the best we can do with intrinsic spin orbit?

Better question: How do we [1] keep spin qubit coherence [2] with strong intrinsic spin-orbit coupling

This would make hole spin a simple candidate for scalable quantum computation.

Existential Question

Question: Is 1 μ s coherence time the best we can do with intrinsic spin orbit?

Better question: How do we [1] keep spin qubit coherence [2] with strong intrinsic spin-orbit coupling

This would make hole spin a simple candidate for scalable quantum computation. The conventional wisdom: this is not possible with intrinsic spin-orbit coupling

I will show you experiments demonstrating very long coherence times in a strong spin-orbit coupled system (spin is not a good quantum number).

Electrical and

Computer

Engineering

Our model system: hole spin bound to Si:B

ТНЕ

BRITISH

COLUMBIA

UNIVERSITY OF

Si valence holes, J=3/2 and $L.S \rightarrow Quantized total angular momentum$

THE UNIVERSITY OF BRITISH COLUMBIA

Long-ranged interactions Mediated by phonons Long relaxation times

Ruskov and Tahan PRB 2013

 Δ e.g. from strain

UNIVERSITY OF

Long coherence times

Salfi, Mol, Culcer, Rogge PRL 2016 Rogge, Salfi, Mol, US Patent 9,691,033

Electric & elastic quadrupole + Zeeman — Electric & elastic dipole

Electric & elastic quadrupole + Zeeman — Electric & elastic dipole

Salfi et al PRL 2016I-qubit, 2-qubit gates:
Strong electric dipole coupling
Coherence:
Robust to E field noise $|3/2, +1/2\rangle$
 $|3/2, -1/2\rangle$ Salfi et al PRL 2016I-qubit, 2-qubit gates:
 $|3/2, -1/2\rangle$ I-qubit, 2-qubit gates:
 $|3/2, -1/2\rangle$

THE UNIVERSITY OF BRITISH COLUMBIA

Hole spin coherence

Objective: Investigate and engineer hole spin coherence in Si:B atoms ²⁸Si, modest strain to engineer coherence and relaxation

Methodology: Planar superconducting resonator Technology to couple/measure/control superconducting qubits We use Nb rather than Aluminum (tolerates **B** field)

Prepare superposition

Apply X($\pi/2$) pulse (input)

Invert to enable refocusing

After time t, apply $X(\pi)$ pulse

 $hf = g^* \mu_B B$ f = 6.6 GHz

Hahn-echo

After time 2t, refocusing (Hahn echo) is emitted into the resonator

Hole spin coherence

Change in β from ~1 to > 2?

 τ_c =correlation time of the fluctuator is changing Unstrained : τ_c fast compared to coherence time Strained: τ_c slow compared to coherence time

Kobayashi, Salfi et al, Nature Materials, 20, 38-42 (2021)

Dynamical decoupling extends coherence time to $T_{2,CPMG} = 9.2$ ms Confirms slow fluctuators are limiting coherence in the ensemble

Kobayashi, Salfi et al, Nature Materials, 20, 38-42 (2021)

Hole spin coherence

How does the strain improve coherence? $\mathscr{H} = \hbar \left(\omega_0 + \frac{\partial \omega}{\partial E} \delta E \right) \sigma_z + v E_z \sigma_x$ Decoherence is suppressed by the gap

Experiment: Reduced longitudinal coupling enhances T₂ [1] Suppress decoherence from electric fluctuations [2] Suppress decoherence from electric dipole-dipole interaction

Kobayashi, **Salfi** et al, Nature Materials, 20, 38-42 (2021)

COLUMBIA

Strained sample also has longer T₁

Time-reversal symmetric system inhibits phonon relaxation

Engineering

Comparison to state-of-the-art

System	Т _{2Н}	T _{2CPMG}
Si:P e- [1]	4 ms	-
Si:P e- [2]	0.95 ms	~100 ms
Si e- QD [3]	I.2 ms	~28 ms
Si h+ QD [4]	0.25 <i>µ</i> s	-
Si:B h+ no strain	23 µs	-
Si:B h+ strain	0.9 ms	9 ms

Electron: Donor and QD ~100 ms T₂ of electrons no electric dipole

Tyryshkin Nature Mat 2011
 Muhonen Nature Nanotech 2013
 Veldhorst Nature Nanotech 2014
 Maurand Nature Comms 2016

this work

Kobayashi, **Salfi** et al, Nature Materials, 20, 38-42 (2021)

Comparison to state-of-the-art

System	Т _{2Н}	T _{2CPMG}	
Si:P e- [1]	4 ms	-	
Si:P e- [2]	0.95 ms	~100 ms	
Si e- QD [3]	I.2 ms	~28 ms	
Si h+ QD [4]	0.25 μs	-	
Si:B h+ no strain	23 µs	-	
Si:B h+ strain	0.9 ms	9 ms	

Hole: QD ~0.25 μs T₂ of hole QD with electric dipole

[1] Tyryshkin Nature Mat 2011
[2] Muhonen Nature Nanotech 2013
[3] Veldhorst Nature Nanotech 2014
[4] Maurand Nature Comms 2016

this work

Kobayashi, **Salfi** et al, Nature Materials, 20, 38-42 (2021)

Comparison to state-of-the-art

	System	Т _{2Н}	T _{2CPMG}	
	Si:P e- [1]	4 ms	-	Hole: acceptor
	Si:P e- [2]	0.95 ms	~100 ms	$\sim 1 \text{ ms } T_2$
	Si e- QD [3]	I.2 ms	~28 ms	~ 10 ms T _{2CPMG}
	Si h+ QD [4]	0.25 μs	-	with electric dipole
옷 Si:B h+	Si:B h+ no strain	23 µs	-	[1] Tyryshkin Nature Mat 2
this v	Si:B h+ strain	0.9 ms	9 ms	[2] Muhonen Nature Nanote [3] Veldhorst Nature Nanote [4] Maurand Nature Comms

yshkin Nature Mat 2011 honen Nature Nanotech 2013 dhorst Nature Nanotech 2014 urand Nature Comms 2016

Intrinsic electric dipoles are compatible with long coherence times 10⁴ to 10⁵ times improvement over previous spin-orbit systems

Kobayashi, **Salfi** et al, Nature Materials, 20, 38-42 (2021)

Electrical and Computer Engineering

THE

BRITISH

COLUMBIA

UNIVERSITY OF

Si:B devices : single and coupled atoms

Single-atom transistor

van der Heijden, **Salfi** et al, Nano Letters 2014

Gate-based spin readout

van der Heijden, Kobayashi, House, **Salfi** et al, Science Advances 2018

Electrical and Computer Engineering

THE

BRITISH

COLUMBIA

UNIVERSITY OF

Universality of Group-IV Hole Physics

The theoretical result of long T_1 and long T_2 (robustness to electric fluctuations) with electric control are generic [1] Group IV materials (Rashba, no Dresselhaus SOC): Si or Ge [2] Confinement potential: impurity (left) or quantum dot (right) $\mathcal{H} = \frac{1}{2} \hbar \omega(\mathbf{F}) \sigma + (\mathbf{V} \cdot \mathbf{F}) \sigma$

Summary

Summary of experiment: Holes in 28Si

A J=3/2 system nearly as coherent as a S=1/2 (28Si) or S=1 (Diamond)

 Nontrivial: L.S coupling, 10⁴ to 10⁵ coherence improvement Strain increases T₁ and T₂
 Opportunity: Electric & elastic quadrupole to build long-distance gates Clock transition to maintain qubit coherence

Kobayashi, **Salfi** et al, Nature Materials, 20, 38-42 (2021) van der Heijden et al, Science Advances, 2018 **Salfi** et al, PRL 2016

Thank you!

QUNSWTakashi Kobayashi
Sven Rogge **Materials**H Riemann
N Abrosimov

P Becker HJ Pohl Theory Dimi Culcer (UNSW) Bill Coish (hyperfine) (McGill)

B Johnson (Melbourne) J McCallum (Melbourne)

Australian Government Australian Research Council

THE UNIVERSITY OF BRITISH COLUMBIA Kobayashi, **Salfi** et al, Nature Materials, 2021 Wang et al Nature PJ Quantum Information, 2021 van der Heijden, Kobayashi, House, **Salfi** et al, Science Advances, 2018 **Salfi** et al, Phys. Rev. Lett. 2016

Thank you!

Current projects on spin qubits Quantum simulation (Fermionic) Spin based quantum computation Gate-based hole-spin quantum dots Assisted by superconducting technology

More interesting projects coming soon...

THE UNIVERSITY OF BRITISH COLUMBIA

