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Introduction 
(my research interests)

• I am a high energy theorist. Mainly working on numerical simulations using supercomputer. 

• In high energy theory, we would like to study nonperturbative property of quantum field 
theories.  
(ex. Phase transition, thermodynamics, correlation of observables) 

• In particular, theory of elementary particles is described by gauge theory.  
(For instance, quantum chromodynamics (QCD) is given by SU(3) gauge theory) 

• Lattice QCD simulation based on Markov-Chain-Monte-Carlo method has been a standard 
method in this subject, but it suffers from the sign problem if we consider some parameter 
regime. 

• Implementation of quantum computing for QCD with such a regime is my long goal.



Today's talk
• We consider the simple gauge theory  
1+1 dimensional U(1) gauge theory + topological  term coupled with fermion, Schwinger 
model 
(e.g.  QCD is 3+1 dimensional SU(3) gauge theory coupled with fermions)  

• We use a simulator (not real quantum device) to see if our strategy works well 
even in the parameter regime where the sign problem appears in conventional Monte 
Carlo 

• State preparation here is adiabatic state preparation 

• See the systematic error from adiabatic state preparation and adiabatic schedule function

θ



Schwinger model



Schwinger model
• Schwinger model = 1+1 dim. U(1) gauge theory  

 

•  term induces the sign problem in Monte Carlo simulation 

• In this work, we numerically obtain the potential between two 
probe charges with the distance  

• Analytical calculation predicts the potential between two 
probe depends on  and . 

• We compare the results with analytic results in both infinite 
vol. and finite vol. using the mass perturbation
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• Lagrangian in continuum 

• Hamiltonian in continuum 

• Hamiltonian on lattice (staggered fermion, link variable) 

• Remove gauge d.o.f. (OBC and Gauss law constraint) 

• Spin Hamiltonian using Pauli matrices(Jordan-Wigner trans.) 

From  to  for Quantum computerℒ ℋ
Ex) Schwinger model with open b.c.
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PBC: Shaw et al. Quantum 4, 306 (2020) 
arXiv:2002.11146

Apply quantum algorithms to this spin hamiltonian.

Canonical momentum: Π = ∂0A1 +
gθ
2π

Link variable:  
Staggered fermion: 

Ln ↔ − Π(x)/g, Un ↔ e−iagA1(x),

Gauss law: 

χn =
Xn − Yn

2
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∏
i=0

(−iZi)Jordan-Wigner trans.:

Map the Lagrangian to the Spin Hamiltonian
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• Spin Hamiltonian:  

 

• Theta-term can be expressed as a background electric field  
(link variable) in Hamiltonian formalism.  
Probe charge shift the value of theta 

• Generate the ground state (  ) using adiabatic state preparation 
with 2nd order Suzuki-Trotter decomposition 

• Directly measure the energy  , and  
Cf.) In Lattice QCD, we calculate the Wilson loop and extract the 
potential from its exponent. 
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Simulation results



• IBM Qiskit library, Simulator (not real quantum device) 

• lattice size: N=15,21, open b.c.(remove d.o.f. of gauge field)  

• # of shots = 100,000 - 400,000 

• a=0.4, g=1.0, mass= 0.00 - 0.25 
cf) 1st order phase transition emerges at  with  in infinite limitmc/g ≈ 0.33 θ0 = π, q = 0

Simulation Setup
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Result(1): integer charge ( )θ0 = 0
•   screening potential  

- - - - denotes  

• In  and finite N is given by 

 

• const. term remains in  

-・-・(roughly) denotes   

• Our results are consistent with the theoretical 
predictions in the finite N 
We expect the discrepancy comes from finite a effect
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Result(2): fractional charge ( )θ0 = 0

• If Q is fractional, in  
 is screening for massless case 
 is confinement in large  for 

nonzero masses 

• In  and finite N, potential shape  
gradually changes (see black curve) 

• Around , black curve 
depicts linear behavior

a → 0,N → ∞
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Result(2): fractional charge ( )θ0 = 0
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• string tension is calculated by fitting long  data 

• It shows the large discrepancy from  
Coulomb potential (pure U(1) gauge theory) 

• Our data are consistent with the analytical 
prediction of 1st order mass perturbation 
in finite vol. 

• Around , string tension in finite vol. is quite 
different from result in infinite volume:

 
because of open boundary condition 
(We will show the restoration of the periodicity 
 Work in progress w/ Honda, Kikuchi and Tanizaki)

ℓ
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Result(3): non-zero  caseθ0
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• non-zero  simulation is doable  

•  periodicity is broken because of open b.c. 
Infinite volume limit: ) 

• ,  is a  shift of boundary charge ( ) 

for , 
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Systematic error



Systematic errors from  
adiabatic state preparation

• Systematic errors: Adiabatic error (T) 
                            Trotter error ( ) 
                            (initial mass ( ))

δt

minit. ≈ m + 0.5
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t
T
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t
T

, q → q
t
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t
T ) + m

t
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𝒯 exp (−i∫
T

0
dt HA(t)) |Ω⟩0

Generate (approximate) ground state based on adiabatic theorem
Work in progress with M.Honda, Y.Kikuchi, Y.Tanizaki

In finite T, an approximate ground state is obtained. 
 
In the adiabatic Hamiltonian, the parameters of model depend on the time (t/T),  
( e.g.  where  with ) 
If we take a linear fn,

θ0 f(t/T ) f(x) f(0) = 0 , f(1) = 1

HA(0) = H0 HA(T ) = HHere,  is adiabatic HamiltonianHA(t)



Adiabatic error and adiabatic schedule

Lecture note by A. Childs

Adiabatic error ( ) scales  if the first  derivatives of the Hamiltonian is zero at the 
beginning and end of the evolution.

ϵ 𝒪(1/Tm+1) m

 denotes the first derivative of adiabatic Hamiltonian at t=0 and t=T 
 denotes the gap energy

·H(t/T )

Δ(t)

Rezakhani A T, Pimachev A K and Lidar D A 2010 Phys. Rev. A 82 052305 
Lidar D A, Rezakhani A T and Hamma A 2009 J. Math. Phys. 50 102106

 Thus, naively if the adiabatic schedule fn. has a mild slope at both edges of time evolution,  
 then we expect that adiabatic error becomes small.



Adiabatic schedule function
• It is difficult to estimate where the gap energy is small in quantum field theory
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We practically find that  is good schedule fn if we take a parameter set of this model. 

Why ?? Around x=0, and 1,  or  has more gentle slop.

tanh(x)/tanh(1)

tanh2(2x)/tanh2(2) x2

Work in progress with M.Honda, Y.Kikuchi, Y.Tanizaki
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Adiabatic schedule function
• It is difficult to estimate where the gap energy is small in quantum field theory
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Summary and outlook
• We carried out the numerical simulation for the screening-type and confinement potentials of 
Schwinger model using quantum algorithm 

• Thanks to the Hamiltonian formalism, even in  regime, we can perform the simulations 

• The potential can be directly obtained from the vev of Hamiltonian. 

• If we consider  limits, some improvements are necessary. 

• Choice of adiabatic schedule is nontrivial in some QFT. 

• Using quantum algorithm, we can investigate various QFTs which suffer from the sign problem 
in conventional Monte Carlo approach.

θ0 ≠ 0

a → 0,N → ∞



Confinement potential in Lattice QCD

• Lattice QCD simulations started the derivation 
of the confinement potential. 

• Now, QC for QFT (or QCD) have just started!

M.Creutz, PRD21 (1980) 2308


