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Introduction
(Mmy research Interests)

- | am a high energy theorist. Mainly working on numerical simulations using supercomputer.

- In high energy theory, we would like to study nonperturbative property of quantum field

theories.
(ex. Phase transition, thermodynamics, correlation of observables)

. In particular, theory of elementary particles is described by gauge theory.
(For instance, guantum chromodynamics (QCD) is given by SU(3) gauge theory)

. Lattice QCD simulation based on Markov-Chain-Monte-Carlo method has been a standard
method In this subject, but it suffers from the sign problem It we consider some parameter
regime.

. Implementation of quantum computing for QCD with such a regime is my long goal.



loday's talk

. We consider the simple gauge theory

1+1 dimensional U(1) gauge theory + topological 8 term coupled with fermion, Schwinger
model

(e.g. QCD is 3+1 dimensional SU(3) gauge theory coupled with fermions)

. We use a simulator (not real guantum device) to see It our strategy works well

even In the parameter regime where the sign problem appears in conventional Monte
Carlo

. State preparation here is adiabatic state preparation

. See the systematic error from adiabatic state preparation and adiabatic schedule function



Schwinger model



Schwinger model

M.Honda, E.l., Y.Kikuchi, L.Nagano, T.Okuda, arXiv: 2105.03276
. Schwinger model = 1+1 dim. U(1) gauge theory

L gl | ] 0 £, f+¢, N-1
L = - ZF Yl , €, " + gy (0, +igA )y — myy A
q
>4
. 0 term induces the sign problem in Monte Carlo simulation
- In this work, we numerically obtain the potential between two theoretical predictions in infinite vol. limit
probe charges with the distance # V(Z) V(Z)
. . . . linear
- Analytical calculation predicts the potential between two screening ootential
probe depends on m and g. potential
S. Iso and H. Murayama Prog.Theor.Phys.84(1990)142
D. J. Gross et al., NPB461 (1996) r
. We compare the results with analytic results in both infinite " g

vol. and finite vol. using the mass perturbation integer qinm=0, m#0 . .
fractional gin m #0

fractionalgin m=0




From & to # tor Quantum computer

Ex) Schwinger model with open b.c.

Lagrangian in continuum PBC: Shaw et al. Quantum 4, 306 (2020)

1 g0, | | arXiv:2002.11146
<L =——F, F" +——¢€, " +ipy*(0, + igA )y — mpy
4 4r

Map the Lagrangian to the Spin Hamiltonian

in Hamiltonian usin | | -Wi . X, -V, 77, .
Spin Hamiltonian using Pauli matrices(Jordan-Wigner trans.) Jordan-Wigner trans.: 4= ~">~"[] -iz)

N=2[ =n Z (=1 9 w N=2 m N=l .
H=7Y [}~ —+ 2— + D XX+ VY, 0]+ > Y -1z, i=0
n=0 L i=0 " n=0 n=0 Apply guantum algorithms to this spin hamiltonian.




From & to # tor Quantum computer

Ex) Schwinger model with open b.c.

Lagrangian in continuum PBC: Shaw et al. Quantum 4, 306 (2020)
1 o 86, L | . arXiv:2002.11146
L = — ZF Y dast A €, "+ 1wpyH(0, + igA )y — mypy
Hamiltonian in continuum
H,, = ndx —(H ge()) — Wy (0, + igA )y + mz/‘n//] Canonical momentum: I1 = gyA' + 8¢
2 27 2T

Hamiltonian on lattice (staggered fermion, link variable) .y
Link variable: L, « —TI(x)/g, U, < e84 )

N-1
H=J Z <L +_> - IWZ Unnst = Xy Uizia) +m ), (<D0 1, Staggered fermion: % [¥ulx) n:even
- \/5 w,(x) n:odd
Remove gauge d.o.f. (OBC and Gauss law constraint)
o ( by N N Gauss law: = (=1y
H=1J Z (e |+ Z (}( Xi— > 27[) —iw Y (Vs — 2 Hn) £ Z (=125 1 0=0Il+gy'y—L,—L,_ =xx— >
n=0 n=0
Spin Hamiltonian using Pauli matrices(Jordan-Wigner trans. _ X, -V, ¥, .
P J . ( J ) Jordan-Wigner trans.: X, = H(_lzi)
Z+ni 9, wiE 2
H = ]Z Z T +_Z [X Xn+1+ n n+1 +_Z( l)nZ i=0
2 2T 2 - . . . .
| i=0 i n=0 Apply quantum algorithms to this spin hamiltonian.




Summary of simulation strategy

. Spin Hamiltonian:
- 42

N-2 n Zi + (_1)1’ 19ﬂ W N-2 m N—1 )
H_an:'a gg > F - +3%[Xan+1+YnYn+1] +3n§0(—1) A

. Theta-term can be expressed as a background electric field
(link variable) in Hamiltonian formalism. 0 { 27q + o, bo <m < ly+ 2.
Probe charge shift the value of theta

6o, otherwise.

. Generate the ground state (|Q) ) using adiabatic state preparation

with 2nd order Suzuki-Trotter decomposition

. Directly measure the energy E(¢) = (Q|H(¢)|Q), and V(¢) = E(¢) — E(0)

Cf.) In Lattice QCD, we calculate the Wilson loop and extract the
potential from Its exponent.

(WR, T)) ~exp(—=V(R)/T) with V(R) ~ 6R + a/R

4 —i |
dp —4p
<




Simulation results



Simulation Setup

. IBM Qiskit library, Simulator (not real quantum device)

. lattice size: N=15,21, open b.c.(remove d.o.f. of gauge field)

of shots = 100,000 - 400,000

. a=0.4, g=1.0, mass= 0.00 - 0.25
cf) 1st order phase transition emerges at m./g ~ 0.33 with 6, = z,q = 0 In Iinfinite limit



Result(1): integer charge (6, = 0)

. a—> 0, N—- oo screening potential

- - - - denotes VvV

. Ina - 0 and finite N is given by

q°g” (1 —e)(1 + ™)
2 1 + e—HL

(0) _
VO(£) =

p

. const. term remains in 6(m)

- -+ -+ (roughly) denotes v+ vy

predictions in the finite N

g=1 m=0
25 === VO (/g
0
20— Vi?(0)/g, N =15
0
. Vi%(0)/g, N =21
' N =15 e =
=
1.0 - g5
0.5 -
OO r' | | |
0.0 2.9 5.0 7.5

. Qur results are consistent with the theoretical

We expect the discrepancy comes from finite a effect

q=1 m/g=0.2

4
=== V() /g
—— N=15
37 N =21
—= N =101
24 O N=15 -
O N =21 © o8
B T __
| D —
/’7/
O | | |
0.0 2.5 5.0 7.5




Result(2): fractional charge (6, = 0)

0.2 0.2

— v.20+v "), N=15)

. If Q IS fl’aCthﬂal, |n a — O,N —> OO0 X qiskit (snapshot)

0.15 0.15

V(¢) Is screening for massless case m=0.00

0.1 0.1

V(¢) Is confinement In large ¢ for

0.05 0.05

NONZEro MmMasses

. Ina - 0 and finite N, potential shape
gradually changes (see black curve)

. Around 0.20 < m/g < 0.25, black curve

depicts linear behavior




Result(2): fractional charge (6, = 0)

Potential String tension (o)
. string tension is calculated by fitting long # data N=15, 9=0.25
=== VO (0)/4 - £ (Coulomb) 7
. |t shows the large discrepancy from 0.154{— V9@ 0.10 1 ’

m3(1 — cos(27q))
analytic
m/g = 0.2

Coulomb potential (pure U(1) gauge theory) :

~ 014 © m=0 o T 4 = | - WITVe 4T
. Our data are consistent with the analytical = :
prediction of 1st order mass perturbation 0.05
in finite vol. -
0 +
0

. Around ¢ =0.5 (0 = n), string tension In finite vol. is quite

different from

because of open boundary condition
(We will show the restoration of the periodicity



Result(3): non-zero 6, case

—nergy density

. . 1.2 -
. nhon-zero g, simulation is doable o B2 —— mE(1 - coso) /g’ =
§ 1.0 - finite interval B
. 6: © ¢=0,4/a=0 &
- - 1=
. 2z periodicity Is broken because of open b.c. = 0.8 g=1 0/a=6 _
Infinite volume limit: L*ﬁ 0.6 - g=1,0/a =10 =
< O g¢g=1,/¢/a=14 EE
. _ =
. q=1,7¢la=141s a 2z shift of boundary charge (6,) <
=
forg=0, £/la=0 =




Systematic error



Systematic errors from
adlabatic state preparation

Generate (approximate) ground state based on adiabatic theorem

T
| Q) = Tlim I exp (—iJ dt HA(t)) |Q2)y  Here, H,(») is adiabatic Hamiltonian H,(0)=H, H,T)=H
—> 0 O

. Systematic errors: Adiabatic error (T)

Trotter error (61)
~m+ 0.3))
In finite T, an approximate ground state Is obtained.

(initial mass (m

init.

In the adiabatic Hamiltonian, the parameters of model depend on the time (t/T),
( e.g. 6,f(t/T) where f(x) with f(0) =0 , f(1) = 1)

It we take a linear fn, t i r ( r z
w—=w—, 0> 00—, g=>qg—m—-omy|1l——|+m
T T T T T



Adiabatic error and adiabatic schedule

Theorem. Suppose H(s) has a nondegenerate ground state for all s € |0, 1], and suppose that the

total evolution time satisfies

> 2 (0 1 I(1 )|| /ds ((3c§+c1+03)”ﬁ”2 .
¢ 0

PO

A(r) denotes the gap energy

A3

HHll
AQ

)_.

(49)

Lecture note by A. Childs
H(t/T) denotes the first derivative of adiabatic Hamiltonian at t=0 and t=T

Adiabatic error (¢) scales o(1/7™") if the first m derivatives of the Hamiltonian is zero at the

beginning and end of the evolution.

Rezakhani A T, Pimachev A K and Lidar D A 2010 Phys. Rev. A 82 052305
Lidar D A, Rezakhani A T and Hamma A 2009 J. Math. Phys. 50 102106

Thus, naively If the adiabatic schedule tn. has a mi
then we expect that adiabatic error becomes small.

d slope at both edges of time evolution,



Adiabatic schedule function

It I1s difficult to estimate where the gap energy is small In qguantum field theory

1 4
— X ® x;T=99 o
2
- X ® X’ T=99
0.8 | == tanh(x)/tanh(1) 3| = tanhGo/tanh(1), T=99
= tanh’(2x)/tanh’(2) A tanh’(2x)/tanh’(2), T=99
S‘\D O x,T=792 (True value) P
= . ‘
> B
e o o o
1 ® . b ¢ | Adiabatic error
(=]
0 o

0 0.2 0.4 0.6 0.3 1
X

We practically find that IS good schedule tn If we take a parameter set of this model.

Why ?? Around x=0, and 1, tanh?(2x)/tanh*(2) or x*> has more gentle slop.



Adiabatic schedule function

. It Is difficult to estimate where the gap energy Is small iIn quantum field theory

Gap energy between ground and 1st excited states
In adiabatic process (exact diagonalization calculation)

2.5 T

0.9 -

N =17

[=4,qg=2

[=12,q =2
[=4,q=—1
[=12,g = —1

£
. . »
0000099 6°

0.0

0.2

0.4 0.6 0.8
adiabatic time

1.0

has a rapid decreasing of gap energy around t/T =0.5.

It explains why

since

IS the best schedule fn,

has the most gentle slope around t/T = 0.5.

- X

X
0.8 | === tanh(x)/tanh(1)

—— tanh’(2x)/tanh’(2)




Summary and outlook

. We carried out the numerical simulation for the screening-type and confinement potentials of
Schwinger model using quantum algorithm

. Thanks to the Hamiltonian formalism, even in 6, # 0 regime, we can perform the simulations

. The potential can be directly obtained from the vev of Hamiltonian.

. It we consider a - 0,N - o~ limits, some improvements are necessary.

. Choice of adiabatic schedule is nontrivial iIn some QFT.

. Using quantum algorithm, we can investigate various QFTs which suffer from the sign problem
iIn conventional Monte Carlo approach.



WILSON LOOP

Confinement potential in Lattice QCD

M.Creutz, PRD21 (1980) 2308

* Lattice QCD simulations started the derivation
. of the confinement potential.
2 4 Now, QC for QFT (or QCD) have just started!
o2f d ’ .:.nt'.'an1 -
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FIG. 4. Wilson loops as a function of 8. % 0 20 30
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FIG. 6. The cutoff squared times the string tension
as a function of 8. The solid lines are the strong- and
weak-coupling limits.



