Towards superconducting quantum computing

Yasunobu Nakamura

RIKEN Center for Quantum Computing (RQC)

Research Center for Advanced Science and Technology (RCAST), The University of Tokyo

Superconducting quantum bits

Charge qubit

Chiorescu, YN, Harmans, Mooij, Science (2003)

Artificial two-level system in circuits Coherent control of macroscopic system

YN, Pashkin, Tsai, Nature (1999)

Superconducting qubit – nonlinear resonator **Superconducting** LC resonator **Atom** qubit = Artificial atom ~Å ~mm 000

- Superconductivity \Rightarrow low-loss
- Josephson effect ⇒ Strong nonlinearity
- Macroscopic size ⇒ Strong coupling

Possible decoherence sources

Coherence time of superconducting qubits

W. D. Oliver and P. Welander, MRS BULLETIN 38, 816 (2013) MIT-LL

Quantum supremacy using a programmable superconducting processor

- Tunable-frequency qubits
- Tunable coupling
 - Fast two-qubit gate ~ 12 ns
 - Suppression of residual coupling
- Flip-chip bonding

Average error	Isolated	Simultaneous
Single-qubit (e ₁)	0.15%	0.16%
Two-qubit (e ₂)	0.36%	0.62%
Two-qubit, cycle (e _{2c})	0.65%	0.93%
Readout (e _r)	3.1%	3.8%

 $9 \times 6 - 1 = 53$ qubits

Google AI Quantum Nature 574, 505 (2019)

Fixed-frequency qubits

- Long coherent time ~ 100 µs
- Cross-resonant gate ~ 150 ns F~99.2% (max)
- 65 qubits on cloud service

Best CR gate: F~99.7% A. Kandala et al. arXiv:2011.07050

https://techcrunch.com/wp-content/uploads/2020/09/IBM-Quantum-Hummingbird.jpg

IBM

Google roadmap

Google Al Quantum hardware roadmap

https://www.cnet.com/news/quantum-computer-makers-like-their-odds-for-big-progress-soon/

IBMQ scaling

https://techcrunch.com/wp-content/uploads/2020/09/IBM-Quantum-Hummingbird.jpg

https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/

Packaging for superconducting quantum computer chips

Demands:

- 2D (or 3D) integration of qubits
- High-density wiring with scalability
- High-density I/O connectors
- High-frequency wiring <~ 10 GHz
- Low crosstalk, no parasitic mode
- Low dissipation
- (Superconducting contact)
- Heat anchoring to ~10 mK
- "Light-tight" radiation shielding
- Non-magnetic, non-radioactive, (cosmic-ray proof)

Wiring issues for scaling-up

3D wiring to a qubit chip

Scalability of wiring

	Flip-chip bonding	TSV + Multi-layer PCB	TSV + Vertical coax
On-chip density	$O(\sqrt{N})$	0(1)	0(1)
On-PCB density	$O(\sqrt{N})$	$O(\sqrt{N})$	N.A.

S. Tamate et al. APS March meeting 2021

2D integration with 3D wiring

16-qubit chip

64-qubit chip

5 mm

Quantum bit

$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle & (|\alpha|^2 + |\beta|^2 = 1) \\ &= \cos(\theta/2) |0\rangle + e^{i\varphi} \sin(\theta/2) |1\rangle \end{aligned}$

Single-qubit gate

 $\frac{H}{\hbar} = \frac{\omega_{\rm q}}{2}\sigma_z + \Omega_{\rm R}\cos\omega_{\rm q}t\,\sigma_x$

Qubit readout

 $H_{\rm JC} = \frac{\hbar\omega_{\rm q}}{2}\hat{\sigma}_z + \hbar\omega_{\rm c}\hat{a}^{\dagger}\hat{a} + \hbar g(\hat{\sigma}_+\hat{a} + \hat{\sigma}_-\hat{a}^{\dagger})$

Packaging with vertical access

- Coherence times
- Single qubit gate
- Cross-resonant gate
- Readout

T₁ ~ 32 μs, T₂^E ~ 26 μs ~15 ns, F~99.8% te ~160 ns, F~98.0% ~300 ns, F~98.7%

Magnetic shields for Josephson parametric amplifier

Readout ports

Control ports

Connectors for 16Q package

Magnetic shield for 16Q package

Members

Superconducting Quantum Electronics Research Team @RQC, RIKEN

Quantum Information Physics and Engineering Lab @RCAST, UTokyo

Q-LEAP Superconducting quantum computing flagship

T. Sugiyama S. Tamate

S. Sato

TT

Y. Tabuchi Y. Nakamura K. Kusuyama

J.S. Tsai F. Nori

S. Yorozu E. Abe

K. Kikuchi

T. Yamashita H. Terai

T. Yan K. Mitarai

H. Goto

T. Yamamoto

M. Negoro

K. Fujii