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Quantum simulation in quantum computer
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“…Nature isn’t classical, dammit, and if you want to make 
a simulation of nature, you’d better make it quantum 
mechanical, and by golly it’s a wonderful problem, 
because it doesn’t look so easy…”

Richard P. Feynman
R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

Simulating a quantum system by using other quantum systems

quantum materials

exponentially large 
degrees of freedom

classical computer

exponentially large 
resource required

other quantum 
systems

exponentially large 
resource available



Quantum simulation in Noisy Intermediate-Scale Quantum (NISQ) devices
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50~100 qubits without fault tolerant

John Preskill

Quantum 2, 79 (’18)

Can we do something interesting in NISQ devices !!??



Quantum-classical hybrid scheme
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quantum computer classical computer

describe a quantum state pre/post processing 
less demanding tasks 

….



Variational quantum eigenvalue solver (VQE)  

 8

A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik & J. L. O’Brien, Nat. Commun. 5, 4213 (’14)

Efficient parametrization of 
a variational state is crucial

� : �  dimensional vector|Ψ({θi})⟩ 2N

� : �  dimensional vector{θi} poly(N)
(variational parameters)

(variational state)

 E({θi}) = ∑
k

⟨Ĥk⟩{θi}

expectation value of energy

quantum computer

variational quantum state:  
        parametrized circuit ansatz

|Ψ({θi})⟩ = Û({θi}) |0⟩ =

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

quantum circuit

Û({θi})
unitary operator

optimization of variational parameters !{θi}

 θi ← θi − λ∂E({θi})/∂θi

classical computer

 Ĥ =
M

∑
k=1

Ĥk

� : number of qubitsN

 Ĥ |Ψ({θi}) = E({θi}) |Ψ({θi})



Hardware efficient VQE by IBM
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A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow & J. M. Gambetta, Nature 549, 242 (’17)

UENT: cross resonance gates that can realize [ZX]b 

cf. CNOT=[ZI]-1/2[ZX]1/2[IX]-1/2


([ZX]1/2 sandwiched by single-qubit rotations)

Rigetti and Devoret, PRB ’10

d=1 d=1 d=1



4-site S=1/2 Heisenberg model: experiment LETTER RESEARCH

1 4  S E P T E M B E R  2 0 1 7  |  V O L  5 4 9  |  N A T U R E  |  2 4 3

the state | 00…0〉 , applying d entanglers UENT that  alternate with N Euler 
rotations, giving

∏ ∏

∏

θ θ θ

θ

Φ| 〉= × × × × ×

| … 〉

= =

−

=

!U U U U

U

( ) [ ( )] [ ( )]

[ ( )] 00 0

q

N
q d

q

N
q d

q

N
q

1
,

ENT
1

, 1
ENT

1
,0

Because the qubits are all initialized in their ground state | 0〉 , the first 
set of Z rotations of Uq,0(θ) is not implemented, resulting in a total of 
p =  N(3d +  2) independent angles. In the experiment, the evolution 
time τ and the individual couplings in H0 can be controlled. However, 
numerical simulations indicate that accurate optimizations are 
obtained for fixed-phase entanglers UENT, leaving the p control angles 
as  variational parameters. Our hardware-efficient approach does not 
rely on the accurate implementation of specific two-qubit gates and can 
be used with any UENT that generates sufficient entanglement. This is 
in  contrast to unitary coupled-cluster trial states, which require high- 
fidelity  quantum gates that approximate a unitary operator tailored on 
the basis of a theoretical ansatz. For the experiments considered here, 
the entanglers UENT are composed of a sequence of two-qubit cross- 
resonance gates23. Simulations as a function of entangler phase show 
plateaus of minimal energy error around gate phases that correspond 
to the maximal pairwise concurrence; see Supplementary Information. 
We therefore set the entangler evolution time τ at the beginning of such 
plateaus, to reduce decoherence effects.

In our experiments, the Z rotations are implemented as frame 
changes in the control software24, whereas the X rotations are imple-
mented by appropriately scaling the amplitude of calibrated Xπ pulses, 
using a fixed total time of 100 ns for every single-qubit rotation. The 
cross-resonance gates that compose UENT are implemented by driving 
a control qubit Qc with a microwave pulse that is resonant with a target 
qubit Qt. We use Hamiltonian tomography of these gates to determine 
the strengths of the various interaction terms, and the gate time for 

maximal entanglement23. We set our two-qubit gate times at 150 ns, to 
try to minimize the effect of decoherence without compromising the 
accuracy of the optimization outcome; see Supplementary Information.

After each trial state is prepared, we estimate the associated energy 
by measuring the expectation values of the individual Pauli terms in 
the Hamiltonian. These estimates are affected by stochastic fluctua-
tions due to finite sampling. Different post-rotations are applied after 
trial-state preparation for sampling different Pauli operators (Fig. 1c, d). 
We group the Pauli operators into tensor product basis sets that require 
the same post-rotations. We numerically show that such grouping 
reduces the energy fluctuations, while keeping the same total number 
of samples, thereby reducing the time overhead for energy estimation; 
see Supplementary Information. The energy estimates are then used 
in a gradient descent algorithm that relies on a simultaneous perturba-
tion stochastic approximation (SPSA) to update the control parameters. 
The SPSA algorithm approximates the gradient using only two energy 
measurements, regardless of the dimensions of the parameter space p, 
achieving a level of accuracy comparable to that of standard gradient 
descent methods, in the presence of stochastic fluctuations10. This is 
crucial for optimizing over many qubits and long depths for trial-state 
preparation, enabling us to optimize over a number of parameters as 
large as p =  30.

To address molecular problems on our quantum processor, we rely on 
a compact encoding of the second-quantized fermionic Hamiltonians 
onto qubits. The Hamiltonian for molecular H2 has four spin orbitals, 
representing the spin-degenerate 1s orbitals of the two hydrogen atoms. 
We use a binary tree encoding11 to map the Hamiltonian to a four-
qubit system, and remove the two qubits that are associated with the 
spin parities of the system9. The Hamiltonian for BeH2 is defined on 
the basis of the 1s, 2s and 2px orbitals that are associated with Be, and 
the 1s orbital that is associated with each H atom, for a total of ten spin 
orbitals. We then assume perfect filling of the innermost two 1s spin 
orbitals of Be, after shifting their energies by diagonalizing the non- 
interacting part of the fermionic Hamiltonian. We map the eight- 
spin-orbital Hamiltonian of BeH2 using parity mapping and, as in 
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Figure 1 | Quantum chemistry on a superconducting quantum 
processor. Solving electronic-structure problems on a quantum computer 
relies on mappings between fermionic and qubit operators. a, Parity 
mapping of eight spin orbitals (drawn in blue and red, not to scale) onto 
eight qubits, which are then reduced to six qubits owing to fermionic 
spin and parity symmetries. The length of the bars indicate the parity of 
the spin orbitals that are encoded in each qubit. b, False-coloured optical 
micrograph of the superconducting quantum processor with seven 
transmon qubits. These qubits are coupled via two coplanar waveguide 
resonators (violet) and have individual coplanar waveguide resonators 

for control and read-out. c, Hardware-efficient quantum circuit for trial-
state preparation and energy estimation, shown here for six qubits. For 
each iteration k, the circuit is composed of a sequence of interleaved 
single-qubit rotations Uq,d(θk) and entangling unitary operations UENT 
that entangle all of the qubits in the circuit. A final set of post-rotations 
(I, X− π/2 or Yπ/2) before the qubits are read out is used to measure the 
expectation values of the individual Pauli terms in the Hamiltonian and to 
estimate the energy of the trial state. d, An example of the pulse sequence 
for the preparation of a six-qubit trial state, in which UENT is implemented 
as a sequence of two-qubit cross-resonance gates.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

UENT: cross resonance gates that can realize [ZX]b 

cf. CNOT=[ZI]-1/2[ZX]1/2[IX]-1/2


([ZX]1/2 sandwiched by single-qubit rotations)

Rigetti and Devoret, PRB ’10

A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow & J. M. Gambetta, Nature 549, 242 (’17)

Hardware efficient VQE by IBM
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FIG. S9. Experimental optimization for di↵erent depths: LiH Hamiltonian at bond distance and 4-qubit
Heisenberg model a Experimental optimization of the 4-qubit LiH Hamiltonian at bond distance, using depth d = 0 (green),
1 (red) 2 (blue) circuits for trial state preparation. The exact energy is indicated by the black dashed line. Bottom inset
describes the qubits and the cross resonance gates that constitute UENT, for this experiment. b Histograms of outcomes from
100 numerical simulations that account for decoherence and finite sampling e↵ects show significant overlap for depth d = 0
(green), 1 (red), 2 (blue) circuits. The black dashed line indicates the exact energy and the green, red and blue dashed lines
are the results from the single experimental runs of a, for d = 0, 1 and 2 circuits respectively. c Experimental optimization
of the 4-qubit Heisenberg Hamiltonian for J/B = 1, using depth d = 0 (green), 1 (red), 2 (blue), 3 (orange) circuits for trial
state preparation. The exact energy is indicated by the black dashed line. d Histograms of outcomes from 100 numerical
simulations that account for decoherence and finite sampling e↵ects show significant improvement over depth d = 0 circuits
with d = 1(red), 2 (blue), 3 (orange) circuits. The black dashed line indicates the exact energy and the green, red, blue and
orange dashed lines are the results from the single experimental runs of c, for d = 0, 1, 2 and 3 circuits respectively.

d=0
d=3

!10

 �H = J∑
i

Si ⋅ Si+1



Symmetry-adapted VQE
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K. Seki, T. Shirakawa & S. Yunoki, Phys. Rev. A 101, 052340/1-15 (’20).

A system described by Hamiltonian H has its own symmetry 
point group symmetry, translational symmetry, spin rotational symmetry, … 

A parametrized circuit inherently breaks the symmetry of H  



Projection operator to restore symmetry
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Projection operator !  onto the !  irreducible representation with the ! -th entry:  ̂P(γ)
l γ l

� : symmetry operator s. t. � : unitarŷg ̂gĤ ̂g−1 = Ĥ

SEKI, SHIRAKAWA, AND YUNOKI PHYSICAL REVIEW A 101, 052340 (2020)

FIG. 1. Schematic of the one-dimensional Heisenberg model
with N = 16 sites under the periodic-boundary conditions. The ex-
change interaction J acts between nearest-neighboring sites at which
spin-1/2 spins (i.e., qubits) reside.

parametrized two-qubit gate and a trial wave function used
in the present VQE simulation, respectively. Appendix C
describes that an entangled spin-singlet pair (i.e., one of the
Bell states) formed by distant qubits can be generated by
repeatedly applying a local two-qubit gate for finite times. Fi-
nally, Appendix D illustrates a ground-state-energy evaluation
on quantum hardware. Throughout the paper, we set h̄ = 1.

II. MODEL

The Hamiltonian of the spin-1/2 Heisenberg model is
given by

Ĥ = J
4

∑

⟨i, j⟩
(X̂iX̂ j + ŶiŶj + ẐiẐ j )

= J
2

∑

⟨i, j⟩

(
P̂i j − Î

2

)
, (1)

where J > 0 is the antiferromagnetic exchange interaction,
⟨i, j⟩ runs over all nearest-neighbor pairs of qubits i and j
connected with the exchange interaction J , and X̂i, Ŷi, and Ẑi
are the Pauli operators acting on the ith qubit. Î is the identity
operator and P̂i j is the SWAP operator which acts on the ith
and jth qubits as P̂i j |a⟩i|b⟩ j = |b⟩i|a⟩ j . The second line in
Eq. (1) follows from the fact that the inner product of the Pauli
matrices can be written as

X̂iX̂ j + ŶiŶj + ẐiẐ j =
{

3Î (i = j),

2P̂i j − Î (i ̸= j).
(2)

Note that P̂i j is Hermitian, unitary, and involutory. We con-
sider Ĥ on a one-dimensional periodic chain with N = 16
sites at which qubits reside (see Fig. 1).

III. SPATIAL SYMMETRIES

In this section, we first briefly review the projection opera-
tor that can restore the Hamiltonian symmetry of an arbitrary
quantum state. The projection operator is composed of a set
of symmetry operations that do not alter the Hamiltonian. We

then discuss how to implement these symmetry operations on
a quantum circuit.

A. Projection operator and symmetrized state

In general, a quantum many-body system possesses its own
particular symmetry and the Hamiltonian describing such a
quantum many-body system is invariant under a set of sym-
metry operations that define the symmetry. These symmetry
operations form a group, the Hamiltonian symmetry group,
and the symmetry that is relevant to our study here is spatial
symmetry such as point group symmetry and translational
symmetry of a lattice where the order of the group is finite. It
is well known that an irreducible representation of any finite
group can be chosen to be unitary [43].

The projection operator for the lth basis (l = 1, . . . , dγ ) of
an irreducible representation γ in a finite group G is given by

P̂(γ )
l = dγ

|G|
∑

ĝ∈G
[D̄(γ )(ĝ)]∗ll ĝ, (3)

where dγ is the dimension of the irreducible representation
γ , |G| is the order of G, ĝ is a symmetry (unitary) operation
in the group G, and [D̄(γ )(ĝ)]ll is the lth diagonal element
of a matrix representation for the symmetry operation ĝ in
the irreducible representation γ [43,44]. Here, ĝ satisfies
ĝĤ ĝ− 1 = Ĥ , or equivalently [Ĥ, ĝ] = 0. Thus, the projection
operator commutes with the Hamiltonian,

[
Ĥ, P̂(γ )

l

]
= 0. (4)

Note also that the projection operator is idempotent (P̂(γ )
l )2 =

P̂(γ )
l and Hermitian (P̂(γ )

l )† = P̂(γ )
l , but not unitary. Eigen-

values of P̂(γ )
l are either 0 or 1, implying that it is positive

semidefinite.
For an arbitrary quantum state |ψ⟩, the symmetry-projected

state P̂(γ )
l |ψ⟩ is indeed the lth basis of the irreducible repre-

sentation γ because, for a unitary operator ĝ ∈ G,

ĝ
∣∣ψ (γ )

l

〉
= ĝ

dγ

|G|
∑

ĝ′∈G
[D̄(γ )(ĝ′)]∗ll ĝ

′∣∣ψ (γ )
l

〉

= dγ

|G|
∑

ĝ′′∈G
[D̄(γ )(ĝ− 1ĝ′′)]∗ll ĝ

′′∣∣ψ (γ )
l

〉

= dγ

|G|
∑

k

∑

ĝ′′∈G
[D̄(γ )(ĝ− 1)]∗lk[D̄(γ )(ĝ′′)]∗kl ĝ

′′∣∣ψ (γ )
l

〉

=
∑

k

[D̄(γ )(ĝ)]kl
∣∣ψ (γ )

k

〉
, (5)

where

∣∣ψ (γ )
l

〉
=

P̂(γ )
l |ψ⟩

√
⟨ψ |P̂(γ )

l |ψ⟩
. (6)

is the symmetry-projected normalized state, referred to simply
as a symmetrized state hereafter, and we used (P̂(γ )

l )2 = P̂(γ )
l

in the first line and
∣∣ψ (γ )

k

〉
= dγ

|G|
∑

ĝ∈G
[D̄(γ )(ĝ)]∗kl ĝ

∣∣ψ (γ )
l

〉
(7)

052340-2

a sum of unitaries

Symmetry adapted state: 

|ψ(γ)
l ⟩ =

̂P(γ)
l |ψ⟩

⟨ψ | ̂P(γ)
l |ψ⟩

|ψ(γ)
l ⟩ ∼ ̂P(γ)

l |ψ⟩
Symmetry-broken state

but �  is not unitarŷP(γ)
l



Simple idea of how to treat non-unitary operation
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 E({θi}) = ∑
k

⟨Ĥk⟩{θi}

expectation value of energy

quantum computer

variational quantum state:  
        parametrized circuit ansatz

|Ψ({θi})⟩ = Û({θi}) |0⟩ =

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

quantum circuit

Û({θi})
unitary operator

optimization of variational parameters !{θi}

 θi ← θi − λ∂E({θi})/∂θi

classical computer

 Ĥ =
M

∑
k=1

Ĥk

everything in a quantum 
computer should be unitary

everything else not unitary 
can be incorporated in a 

classical computer

VQE iteration

(except for measurement)



The ground state: 
Total spin �  (spin singlet) 

Total momentum �  (spatially symmetric)

S = 0
q = 0

Our strategy:  
1. Make a spin-symmetric circuit Ansatz which may break the spatial symmetry 
2. Restore the spatial symmetry by applying a non-unitary projection operator 

Marshall ‘55

Lieb and Mattis ‘62

S=1/2 antiferromagnetic Heisenberg model (J>0)

!14



RVB-type wave function
Quantum circuit

Exponential-SWAP gates Singlet product state

!  represents a linear 
combination of  dimer coverings. 
  
→Resonating-valence-bond (RVB)-
type wave function

|Ψ(θ)⟩eSWAP23 = cos q
2 �isin q

2

1

23

4 1

23

4 1

23

4

= e�iq/2 �isin q
2

1

23

4 1

23

4

|�i

<latexit sha1_base64="95AQKLEwvB5i5SVurOM45CYZ5mU="></latexit>

example: N=4

⇥D(a)
|1i1

|1i2

|1i3

|1i4

|1i5

|1i6

|1i7

|1i8

|1i9

|1i10

|1i11

|1i12

|1i13

|1i14

|1i15

|1i16

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

HH

HH

HH

HH

HH

HH

HH

HH

(b)

=e
RX(q)RX(q)

XX R�q/2R�q/2 XX

!15



Quantum circuit

⇥D(a)
|1i1

|1i2

|1i3

|1i4

|1i5

|1i6

|1i7

|1i8

|1i9

|1i10

|1i11

|1i12

|1i13

|1i14

|1i15

|1i16

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

HH

HH

HH

HH

HH

HH

HH

HH

(b)

=e
RX(q)RX(q)

XX R�q/2R�q/2 XX

“Physical” interpretation
|0ii : spin " associated with ith site
|1ii : spin # associated with ith site
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gate sequence

J

1
2

3

4

5

6
7

89
10

11

12

13

14
15

16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

J

J0

(a) (b)

J

1
2

3

4

5

6
7

89
10

11

12

13

14
15

16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

J

J0

(a) (b)

+ +…C1(✓)

<latexit sha1_base64="wGXN0Z5pvWYtVAiJAB7vyus5eLA=">AAAFCXiczZTNbhMxEIDddoES/lI4crGIKpVLlEWRSm4VvXBrUUlbqYkir3c2seKfle1NiFb7BLwCV7hzQ1x5Co68CfZmlSbbcGeklUfzzdgz41lHKWfGdjq/d3b3gnv3H+w/bDx6/OTps+bB80ujMk2hTxVX+joiBjiT0LfMcrhONRARcbiKpqeeX81AG6bkR7tIYSjIWLKEUWKdadRsno7Co0Fk8oGdgCXF61Gz1Wl3SsF3lbBSWqiS89HB3p9BrGgmQFrKiTE3YSe1w5xoyyiHojHIDKSETskYbpwqiQAzzMvUC3zoLDFOlHaftLi0rkfkRBizEJHzFMROTJ1541ZmP/kNTe14m7wd5kymmQVJl6cnGcdWYd8cHDMN1PKFUwjVzBWA6YRoQq1rYWMgYU6VEETGuWtZgTF2q+KxT1DxYtPB5+wdfGpRUof6FmpRh+YWmjuRlPCigl7dpMxdb7HaN2dF0Tj8p0MUeQf838lmSXG83qo8LmolQ1nBikOdR5oUnnMix+U4rsMp2BLqbTBLlydnKdFazWs0lksaq7ncxk2Vl2FjQWpsXjElYFxnM0iNv6EZ0U5jXMl6wZ7jct1Cz/yWqf/jLfhtzrYcceEG2rHVEOEL3zQNG+lbon187OalUT4KvVLwUjnuVkovXD0Kl2/aYbfd+9Btnbyrnod99BK9QkcoRMfoBL1H56iPKJqhL+gr+hZ8Dr4HP4KfS9fdnSrmBdqQ4NdfkxWcUg==</latexit>

C2(✓)

<latexit sha1_base64="I/dsLFUtjeKlraFGz1eXkOUpJ7w="></latexit>

= a superposition of many singlet-pair-product states
Resonating valence-bond (RVB)-type state cf. spin liquids

RVB-type wave function on a quantum circuit
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� =
⟨Ψ(θ) | Ĥ ̂Pq |Ψ(θ)⟩

⟨Ψ(θ) | ̂Pq |Ψ(θ)⟩

� : translation operator s. t. � : unitarŷTn
̂TnĤ ̂T−1

n = Ĥ

Variational energy w.r.t. the symmetry-restored state 

evaluate these matrix elements  
with quantum computers

Restoring translation symmetry by projection operator

!17

where

Symmetry-broken state

Symmetry-restored state � |Ψq(θ)⟩ =
̂Pq |Ψ(θ)⟩

⟨Ψ(θ) | ̂Pq |Ψ(θ)⟩

�[Ĥ, ̂Tn] = 0 �[Ĥ, ̂Pq] = 0

� ̂Pq =
1

|𝒢 | ∑
n∈𝒢

[χ(q)( ̂Tn)]* ̂TnProjection operator: Sum of unitaries
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FIG. 5. Semilog plot of the fidelity |⟨!0|! (q)(θk )⟩|2 of the
ground state for the spin-1/2 Heisenberg ring with N = 16 as a
function of the NGD iteration k in Eq. (22). The results with different
number of layers (D), and with (filled symbols) and without (empty
symbols) use of the translational symmetry, are shown. (b) Enlarged
figure of panel (a). |!0⟩ is the exact ground state and |! (q)(θk )⟩
is an approximate ground state obtained after the kth iteration of
optimizing the variational parameters in the circuit. The number of
total variational parameters is N × D. The initial parameters θ1 are
set randomly and we use the same initial parameters θ1 for all the
simulations shown here when D is the same.

From Eq. (24), the derivative of the variational energy
E (γ )(θ) can be expressed as

∂θi E
(γ )(θ) = 2Re

[
⟨!(θ)|P̂(γ )Ĥ

∣∣∂θi!(θ)
〉

N (θ)
−Ai(θ)E (γ )(θ)

]

.

(28)

Similarly, by substituting Eq. (24) into Eq. (23), we can show
that the metric tensor [G(γ )(θ)]i j is now given as

[G(γ )(θ)]i j =
〈
∂θi!(θ)

∣∣P̂(γ )
∣∣∂θ j !(θ)

〉

N (θ)
−A∗

i (θ)A j (θ). (29)

Note that Eqs. (24), (25), (28), and (29) are generic forms for
the state subject to the symmetry-projection operator.

For numerical simulations, to evaluate the derivatives of
the trial state, we employ the parameter-shift rule for the
(nonsymmetrized) state

∣∣∂θi!(θ)
〉
= 1

2 |!(θ + πei )⟩, (30)

which readily follows from Eq. (16). Here, ei is the unit
vector whose i′th entry is given by [ei]i′ = δii′ . We should
also note that our numerical simulations in the next section
employ the NGD optimization because, as described above,
this optimization method has been repeatedly proved to be
currently the best method for optimizing a variational wave
function with many variational parameters in the variational

FIG. 6. Same as Fig. 5 but for the variational energy of the
ground state. The horizontal line in panel (b) indicates the exact
ground-state energy E0.

Monte Carlo technique for quantum many-body systems,
when up to the first-order derivative of the variational energy
is available [58]. If we employ this optimization method
in the real experiment, we have to evaluate, in addition to
the matrix elements in the numerator and the denominator
in Eq. (21), several other quantities appearing in Eqs. (28)
and (29) on quantum computers. However, the use of the NGD
optimization is not necessarily required in the symmetry-
adapted VQE scheme and we can always adopt a simpler
optimization method without even using the first derivative of
the variational energy.

V. RESULTS

Here we demonstrate the symmetry-adapted VQE ap-
proach by numerically simulating the spin-1/2 Heisenberg
ring.

A. Ground-state energy

Figures 5 and 6 show a typical behavior of the fidelity
and the variational energy E (γ )(θk ), respectively, for N = 16
as a function of the NGD iteration k in Eq. (22). Here, we
use the translational symmetry of the Hamiltonian that forms
the cyclic group G = {T̂ 1, T̂ 2, . . . , T̂ N } with |G| = N . The
character associated with the operation T̂ n is given by

χ (q)(T̂ n) = eiqn, (31)

where q = 2πm/N with m = −N/2 + 1,−N/2 +
2, . . . , N/2 − 1, N/2, corresponding to the total momentum
of the symmetrized state, and the dimension dq of the
representation q is 1. The ground state of the spin-1/2
Heisenberg ring for N = 16 is at the q = 0 sector and
spin singlet.
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FIG. 5. Semilog plot of the fidelity |⟨!0|! (q)(θk )⟩|2 of the
ground state for the spin-1/2 Heisenberg ring with N = 16 as a
function of the NGD iteration k in Eq. (22). The results with different
number of layers (D), and with (filled symbols) and without (empty
symbols) use of the translational symmetry, are shown. (b) Enlarged
figure of panel (a). |!0⟩ is the exact ground state and |! (q)(θk )⟩
is an approximate ground state obtained after the kth iteration of
optimizing the variational parameters in the circuit. The number of
total variational parameters is N × D. The initial parameters θ1 are
set randomly and we use the same initial parameters θ1 for all the
simulations shown here when D is the same.
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that the metric tensor [G(γ )(θ)]i j is now given as

[G(γ )(θ)]i j =
〈
∂θi!(θ)

∣∣P̂(γ )
∣∣∂θ j !(θ)

〉

N (θ)
−A∗

i (θ)A j (θ). (29)

Note that Eqs. (24), (25), (28), and (29) are generic forms for
the state subject to the symmetry-projection operator.

For numerical simulations, to evaluate the derivatives of
the trial state, we employ the parameter-shift rule for the
(nonsymmetrized) state
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which readily follows from Eq. (16). Here, ei is the unit
vector whose i′th entry is given by [ei]i′ = δii′ . We should
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when up to the first-order derivative of the variational energy
is available [58]. If we employ this optimization method
in the real experiment, we have to evaluate, in addition to
the matrix elements in the numerator and the denominator
in Eq. (21), several other quantities appearing in Eqs. (28)
and (29) on quantum computers. However, the use of the NGD
optimization is not necessarily required in the symmetry-
adapted VQE scheme and we can always adopt a simpler
optimization method without even using the first derivative of
the variational energy.

V. RESULTS

Here we demonstrate the symmetry-adapted VQE ap-
proach by numerically simulating the spin-1/2 Heisenberg
ring.

A. Ground-state energy

Figures 5 and 6 show a typical behavior of the fidelity
and the variational energy E (γ )(θk ), respectively, for N = 16
as a function of the NGD iteration k in Eq. (22). Here, we
use the translational symmetry of the Hamiltonian that forms
the cyclic group G = {T̂ 1, T̂ 2, . . . , T̂ N } with |G| = N . The
character associated with the operation T̂ n is given by

χ (q)(T̂ n) = eiqn, (31)

where q = 2πm/N with m = −N/2 + 1,−N/2 +
2, . . . , N/2 − 1, N/2, corresponding to the total momentum
of the symmetrized state, and the dimension dq of the
representation q is 1. The ground state of the spin-1/2
Heisenberg ring for N = 16 is at the q = 0 sector and
spin singlet.
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Figure 5 shows the fidelity F ≡ |⟨!0|! (q )(θk )⟩|2 of the
ground state between the exact ground state |!0⟩, calculated
with the Lanczos exact diagonalization method [81–83], and
the approximate ground state |! (q )(θk )⟩ obtained after the kth
iteration of optimizing the variational parameters in the circuit
with different layer depth D. For comparison, the results for
the cases with the same circuit structure but not symmetrized
are also shown. The fidelity F for both symmetrized and
nonsymmetrized cases is less than 1% when k = 1 and rapidly
increases at k ≈ 10. However, the fidelity F is significantly
worse for the nonsymmetrized cases, even when D = 4, cor-
responding to the circuit with N × D = 64 variational param-
eters. In sharp contrast, when the symmetry is imposed, the
fidelity F becomes as large as 98.8% already for the shallow-
est circuit with D = 1 and 99.9% with D = 2, clearly demon-
strating an excellent improvement by symmetrizing the state.

Figure 6 shows the variational energy of the ground
state calculated using |! (q )(θk )⟩ for both symmetrized and
nonsymmetrized cases with different layer depths D in the
circuit. As a reference, the exact ground-state energy E0
calculated with the Lanczos exact diagonalization method is
also shown. As expected from the fidelity results in Fig. 5,
the converged variational energy E (q )(θk ) for the nonsym-
metrized cases is much larger than the exact value E0 even
when D = 4. On the other hand, the symmetrized case can
obtain the decently accurate energy already for D = 1 because
E (q )(θk=103 )/JN = −0.4447. The variational energy is further
improved by increasing the number of layers to D = 2, in
which E (q )(θk=103 )/JN = −0.4461 is essentially exact.

B. Excitation energy

One of the advantages of the symmetry-adapted VQE
scheme is that it can resolve the quantum numbers of the
eigenstates simply by using the character χ (q )(T̂ n ) of the
desired quantum number q . Here we demonstrate this for
the lowest magnetically excited states by calculating the vari-
ational energy in the S = 1 sector at momentum q ,

E (q )
S=1(θ) ≡ E [!̃ (q )(θ)] = ⟨!̃(θ)|ĤP̂(q )|!̃(θ)⟩

⟨!̃(θ)|P̂(q )|!̃(θ)⟩
, (32)

where |!̃(θ)⟩ = Û(θ)|#̃⟩ with

|#̃⟩ =
N/2−1⊗

i=1

|s2i−1,2i⟩|tN−1,N ⟩ (33)

and |ti j⟩ = (|0⟩i|1⟩ j + |1⟩i|0⟩ j )/
√

2. Note that |#̃⟩ has the
quantum numbers S = 1 and Sz = 0 [57] and therefore |!̃(θ)⟩
also preserves these quantum numbers. The quantum state
|!̃(θ)⟩ can be generated from the same circuit structure in
Fig. 4 merely by setting the initial state at, for example, the
15th qubit to |0⟩15, instead of |1⟩15 (see also Appendix B).
Notice also that varying the values of q does not require any
change in the circuit structure, because momentum q enters
only in the character χ (q )(T̂ n ) [see Eq. (21)]. Thus, the circuit
structure for the excited-state calculation remains the same as
that for the ground-state calculation.

Figure 7 shows the spin-triplet excitation energy,

$E ≡ E (q )
S=1(θ̃

∗
) − E (0)(θ∗), (34)

FIG. 7. Momentum-resolved spin-triplet (S = 1) excitations for
the spin-1/2 Heisenberg ring with N = 16. The excitation energy
$E is calculated as the difference of the variational energies for the
excited state with S = 1 and momentum q and the ground state. D is
the number of layers in the circuit (see Fig. 4). For comparison, the
exact results are also shown.

for different momentum q , where E (0)(θ∗) is the variational
energy of the ground state discussed in Sec. V A and E (q )

S=1(θ̃
∗
)

is the variational energy at the S = 1 sector with momentum
q given in Eq. (32). θ̃

∗
and θ∗ are the optimized variational

parameters by minimizing separately the corresponding en-
ergy functional, for which we take the values at the k =
1000th iteration. As shown in Fig. 7, the calculated excitation
energies agree well with the exact results already for the
shallowest circuit with D = 1. Moreover, with increasing the
number of layers to D = 2, the accuracy improves systemati-
cally, as in the ground-state-energy calculations. These results
demonstrate that the symmetry-adapted VQE scheme can also
be used to approximate low-lying excited states.

VI. CONCLUSIONS AND DISCUSSION

We have proposed a scheme to adapt the Hamiltonian
symmetry in the hybrid quantum-classical VQE approach.
The proposed scheme is to make use of the projection operator
P̂(γ )

l to project a quantum state, which is described by a quan-
tum circuit that usually breaks the Hamiltonian symmetry
in the VQE approach, onto the lth basis of the irreducible
representation γ of the Hamiltonian symmetry groupG. In the
symmetry-adapted VQE scheme proposed here, the nonuni-
tarity of the projection operator is treated as postprocessing
on classical computers. We have also introduced the “Amida
lottery” construction to implement general symmetry opera-
tions in quantum circuits. Here, each symmetry operation ĝ
is simply represented as a different product of O(N ) SWAP
operations and therefore |G| different circuits are required in
the symmetry-adapted VQE scheme.

052340-7
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FIG. 13. The circuit used for evaluating Reh 0|X̂1X̂2| 0i = Reh ̃0|X̂1X̂2| ̃0i on the ibmqx2 chip. The state | ̃0i = Û23(✓1)|s1,2i|s3,4i is
generated on the first to fourth qubits. The parts of the circuit corresponding to |s1,2i|s3,4i and Û23(✓1) are highlighted with shaded green and
blue boxes, respectively. The rotation angles for RY and RZ gates are also indicated below these gates.

TABLE I. Probabilities p0 and p1 obtained from quantum simula-
tions on the ibmqx2 chip. The values on each row are obtained from
1024 measurements. Ideal (noiseless) results are also shown in the
bottom row. Data were obtained on 6 April 2020 (EST) [110].

Sample p0(%) p1(%) Reh 0|X̂1X̂2| 0i
1 15.430 84.570 -0.69140
2 17.969 82.031 -0.64062
3 15.625 84.375 -0.68750
4 16.309 83.691 -0.67382
5 16.016 83.984 -0.67968
6 15.430 84.570 -0.69140
7 17.578 82.422 -0.64844
8 18.457 81.543 -0.63086
9 17.090 82.910 -0.65820
10 17.969 82.031 -0.64062
11 16.602 83.398 -0.66796
12 17.090 82.910 -0.65820
13 16.992 83.008 -0.66016
14 15.527 84.473 -0.68946
15 16.113 83.887 -0.67774
16 14.648 85.352 -0.70704
Mean 16.553(274) 83.447(274) -0.66894(549)
Ideal 16.667 83.333 -0.66667

the controlled-SWAP (Fredkin) gate in a quantum device, as
demonstrated in Ref. [112], is thus highly desirable.
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FIG. 13. The circuit used for evaluating Re⟨!0|X̂1X̂2|!0⟩ = Re⟨!̃0|X̂1X̂2|!̃0⟩ on the ibmqx2 chip. The state |!̃0⟩ = Û23(θ1)|s1,2⟩|s3,4⟩ is
generated on the first to fourth qubits. The parts of the circuit corresponding to |s1,2⟩|s3,4⟩ and Û23(θ1) are highlighted with shaded green and
blue boxes, respectively. The rotation angles for RY and RZ gates are also indicated below these gates.

correlation functions suffices for estimating E0. Here, we
evaluate the correlation function ⟨!0|X̂1X̂2|!0⟩ by using the
Hadamard test as

Re⟨!0|X̂1X̂2|!0⟩ = p0 − p1, (D8)

where

p0 = 1
2 (1 + Re⟨!0|X̂1X̂2|!0⟩) (D9)

and

p1 = 1
2 (1 − Re⟨!0|X̂1X̂2|!0⟩) (D10)

are probabilities of observing 0 and 1, respectively, by mea-
suring out the ancilla (0th) qubit in Fig. 13 [109]. Among
the correlation functions, X̂1X̂2 is chosen because CNOT gate
is implemented as one of the basis gates on the ibmqx2
chip. Moreover, since X̂1X̂2 does not involve qubits 3 and
4, operation of Û34(θ2) is not necessary for measurements
of X̂1X̂2. Namely, since [X̂1X̂2, Û34(θ )] = 0 for any θ , the
correlation function can be simplified as

⟨!0|X̂1X̂2|!0⟩ = ⟨!̃0|Û34(θ2)† X̂1X̂2Û34(θ2)|!̃0⟩

= ⟨!̃0|X̂1X̂2|!̃0⟩, (D11)

where

|!̃0⟩ = Û23(θ1)|s1,2⟩|s3,4⟩. (D12)

On the ibmqx2 chip, we implement a circuit that generates
|!̃0⟩ for measurements. The eSWAP gate corresponding to
Û23(θ1) is implemented with the decomposition shown in
Fig. 8, where the controlled-RX gate is further decomposed
in the way described in Ref. [85].

Table I shows the probabilities p0 and p1, and esti-
mated values of Re⟨!0|X̂1X̂2|!0⟩ from 16 samples, each of
which consists of 1024 measurements. The negative values
of Re⟨!0|X̂1X̂2|!0⟩ imply the antiferromagnetic correlation
between the nearest-neighbor spins. In the ideal (noiseless)
case, the probabilities are p0 = 1/6 and p1 = 5/6. Averaging
over the results of the 16 samples yields Re⟨!0|X̂1X̂2|!0⟩ =
− 0.66894(549) and hence E0/J = − 2.00682(1647), where
the numbers in parentheses represent the standard error of
the mean for the last digits. Therefore, the exact energy is
obtained within the statistical error.

It is interesting to note that the ground-state energy ob-
tained here is significantly better than the one estimated with
the hardware-efficient ansatz reported in Ref. [13], where

the ground-state energy is approximately − 1.5J [111]. The
substantial improvement found here over the circuit based
on the hardware-efficient ansatz is highly instructive and
suggests that the construction of quantum circuits based on
the RVB-type wave function, which takes into account the
spin rotational symmetry, is a better strategy to describe the
ground state (and also excited states) of the Heisenberg model
on quantum computers.

Finally, we comment on quantum simulations of the same
system with the symmetry-projection scheme. Unfortunately,
we have found it difficult to implement the symmetry op-
erators on a real quantum device at present. The difficulty
is due to controlled-SWAP (Fredkin) gates, each of which is
decomposed into many CNOT gates and one-qubit rotations,
causing formidably noisy results. An efficient implementation
of the controlled-SWAP (Fredkin) gate in a quantum device, as
demonstrated in Ref. [112], is thus highly desirable.

TABLE I. Probabilities p0 and p1 obtained from quantum sim-
ulations on the ibmqx2 chip. The values on each row are obtained
from 1024 measurements. Ideal (noiseless) results are also shown
in the bottom row. Data were obtained on 6 April 2020 (EST)
[110].

Sample p0 (%) p1 (%) Re⟨!0|X̂1X̂2|!0⟩

1 15.430 84.570 − 0.69140
2 17.969 82.031 − 0.64062
3 15.625 84.375 − 0.68750
4 16.309 83.691 − 0.67382
5 16.016 83.984 − 0.67968
6 15.430 84.570 − 0.69140
7 17.578 82.422 − 0.64844
8 18.457 81.543 − 0.63086
9 17.090 82.910 − 0.65820
10 17.969 82.031 − 0.64062
11 16.602 83.398 − 0.66796
12 17.090 82.910 − 0.65820
13 16.992 83.008 − 0.66016
14 15.527 84.473 − 0.68946
15 16.113 83.887 − 0.67774
16 14.648 85.352 − 0.70704
Mean 16.553(274) 83.447(274) − 0.66894(549)
Ideal 16.667 83.333 − 0.66667

052340-12

E0/J = �2
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Because the qubits are all initialized in their ground state | 0〉 , the first 
set of Z rotations of Uq,0(θ) is not implemented, resulting in a total of 
p =  N(3d +  2) independent angles. In the experiment, the evolution 
time τ and the individual couplings in H0 can be controlled. However, 
numerical simulations indicate that accurate optimizations are 
obtained for fixed-phase entanglers UENT, leaving the p control angles 
as  variational parameters. Our hardware-efficient approach does not 
rely on the accurate implementation of specific two-qubit gates and can 
be used with any UENT that generates sufficient entanglement. This is 
in  contrast to unitary coupled-cluster trial states, which require high- 
fidelity  quantum gates that approximate a unitary operator tailored on 
the basis of a theoretical ansatz. For the experiments considered here, 
the entanglers UENT are composed of a sequence of two-qubit cross- 
resonance gates23. Simulations as a function of entangler phase show 
plateaus of minimal energy error around gate phases that correspond 
to the maximal pairwise concurrence; see Supplementary Information. 
We therefore set the entangler evolution time τ at the beginning of such 
plateaus, to reduce decoherence effects.

In our experiments, the Z rotations are implemented as frame 
changes in the control software24, whereas the X rotations are imple-
mented by appropriately scaling the amplitude of calibrated Xπ pulses, 
using a fixed total time of 100 ns for every single-qubit rotation. The 
cross-resonance gates that compose UENT are implemented by driving 
a control qubit Qc with a microwave pulse that is resonant with a target 
qubit Qt. We use Hamiltonian tomography of these gates to determine 
the strengths of the various interaction terms, and the gate time for 

maximal entanglement23. We set our two-qubit gate times at 150 ns, to 
try to minimize the effect of decoherence without compromising the 
accuracy of the optimization outcome; see Supplementary Information.

After each trial state is prepared, we estimate the associated energy 
by measuring the expectation values of the individual Pauli terms in 
the Hamiltonian. These estimates are affected by stochastic fluctua-
tions due to finite sampling. Different post-rotations are applied after 
trial-state preparation for sampling different Pauli operators (Fig. 1c, d). 
We group the Pauli operators into tensor product basis sets that require 
the same post-rotations. We numerically show that such grouping 
reduces the energy fluctuations, while keeping the same total number 
of samples, thereby reducing the time overhead for energy estimation; 
see Supplementary Information. The energy estimates are then used 
in a gradient descent algorithm that relies on a simultaneous perturba-
tion stochastic approximation (SPSA) to update the control parameters. 
The SPSA algorithm approximates the gradient using only two energy 
measurements, regardless of the dimensions of the parameter space p, 
achieving a level of accuracy comparable to that of standard gradient 
descent methods, in the presence of stochastic fluctuations10. This is 
crucial for optimizing over many qubits and long depths for trial-state 
preparation, enabling us to optimize over a number of parameters as 
large as p =  30.

To address molecular problems on our quantum processor, we rely on 
a compact encoding of the second-quantized fermionic Hamiltonians 
onto qubits. The Hamiltonian for molecular H2 has four spin orbitals, 
representing the spin-degenerate 1s orbitals of the two hydrogen atoms. 
We use a binary tree encoding11 to map the Hamiltonian to a four-
qubit system, and remove the two qubits that are associated with the 
spin parities of the system9. The Hamiltonian for BeH2 is defined on 
the basis of the 1s, 2s and 2px orbitals that are associated with Be, and 
the 1s orbital that is associated with each H atom, for a total of ten spin 
orbitals. We then assume perfect filling of the innermost two 1s spin 
orbitals of Be, after shifting their energies by diagonalizing the non- 
interacting part of the fermionic Hamiltonian. We map the eight- 
spin-orbital Hamiltonian of BeH2 using parity mapping and, as in 
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Figure 1 | Quantum chemistry on a superconducting quantum 
processor. Solving electronic-structure problems on a quantum computer 
relies on mappings between fermionic and qubit operators. a, Parity 
mapping of eight spin orbitals (drawn in blue and red, not to scale) onto 
eight qubits, which are then reduced to six qubits owing to fermionic 
spin and parity symmetries. The length of the bars indicate the parity of 
the spin orbitals that are encoded in each qubit. b, False-coloured optical 
micrograph of the superconducting quantum processor with seven 
transmon qubits. These qubits are coupled via two coplanar waveguide 
resonators (violet) and have individual coplanar waveguide resonators 

for control and read-out. c, Hardware-efficient quantum circuit for trial-
state preparation and energy estimation, shown here for six qubits. For 
each iteration k, the circuit is composed of a sequence of interleaved 
single-qubit rotations Uq,d(θk) and entangling unitary operations UENT 
that entangle all of the qubits in the circuit. A final set of post-rotations 
(I, X− π/2 or Yπ/2) before the qubits are read out is used to measure the 
expectation values of the individual Pauli terms in the Hamiltonian and to 
estimate the energy of the trial state. d, An example of the pulse sequence 
for the preparation of a six-qubit trial state, in which UENT is implemented 
as a sequence of two-qubit cross-resonance gates.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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FIG. S9. Experimental optimization for di↵erent depths: LiH Hamiltonian at bond distance and 4-qubit
Heisenberg model a Experimental optimization of the 4-qubit LiH Hamiltonian at bond distance, using depth d = 0 (green),
1 (red) 2 (blue) circuits for trial state preparation. The exact energy is indicated by the black dashed line. Bottom inset
describes the qubits and the cross resonance gates that constitute UENT, for this experiment. b Histograms of outcomes from
100 numerical simulations that account for decoherence and finite sampling e↵ects show significant overlap for depth d = 0
(green), 1 (red), 2 (blue) circuits. The black dashed line indicates the exact energy and the green, red and blue dashed lines
are the results from the single experimental runs of a, for d = 0, 1 and 2 circuits respectively. c Experimental optimization
of the 4-qubit Heisenberg Hamiltonian for J/B = 1, using depth d = 0 (green), 1 (red), 2 (blue), 3 (orange) circuits for trial
state preparation. The exact energy is indicated by the black dashed line. d Histograms of outcomes from 100 numerical
simulations that account for decoherence and finite sampling e↵ects show significant improvement over depth d = 0 circuits
with d = 1(red), 2 (blue), 3 (orange) circuits. The black dashed line indicates the exact energy and the green, red, blue and
orange dashed lines are the results from the single experimental runs of c, for d = 0, 1, 2 and 3 circuits respectively.
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d=3

exact

K. Seki, T. Shirakawa & S. Yunoki, Phys. Rev. A 101, 052340 (’20).
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S=1/2 Heisenberg ring with 4 sites

data taken on April 6, 2020 (EST)



Quantum circuit ansatz based 
on quantum adiabatic process
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Quantum approximate optimization algorithm (QAOA) 
A guiding principle of designing a quantum circuit ansatz



quantum adiabatic process

Discretized quantum adiabatic process

�ℋ̂(τ) = si(τ)ℋ̂i + sf(τ)ℋ̂f

�si(τi) = sf(τf) = 1

�si(τf) = sf(τi) = 0

where scheduling functions satisfy

�ℋ̂(τi) = ℋ̂i, ℋ̂(τf) = ℋ̂f

The final state �  at �  is|ψ(τf)⟩ τ = τf

� |ψ(τf)⟩ = �̂�(τf, τi) |ψi⟩

where �  is the ground state of �  and |ψi⟩ ℋ̂i

��̂�(τf, τi) = Tτe
−i ∫τf

τi
ℋ̂(τ)dτ

discretized quantum adiabatic process

Let us assume � , where � , ℋ̂f = �̂�1 + �̂�2 [�̂�1, �̂�2] ≠ 0

The final state �  is the ground state 
of � , provided �  is large.

|ψ(τf)⟩
ℋ̂f T = τf − τi

�̂�(τf, τi) = lim
M→∞

�̂�d(θM)�̂�d(θM−1)⋯�̂�d(θ1)

The time-evolution operator is 

where

�̂�d(θm) = e−iθ(m)
1 �̂�1e−iθ(m)

2 �̂�2

θ(m)
1 = [si(τm) + sf(τm)]δτ

θ(m)
2 = sf(τm)δτ

with
δτ = (τf − τi)/M
τm = τi + mδτ

and �ℋ̂i = �̂�1

!22

Set �  to be finiteM
Consider �  as variational parameters{θ(m)

1 , θ(m)
2 }

: linear scheduling}



Quantum circuit inspired by quantum adiabatic process
Discretized quantum adiabatic process (DQAP) ansatz

� , where � , ℋ̂ = �̂�1 + �̂�2 ( = ℋ̂f) [�̂�1, �̂�2] ≠ 0

where

�̂�d(θm) = e−iθ(m)
1 �̂�1e−iθ(m)

2 �̂�2

ground state of  ��̂�1 ( = ℋ̂i)

!23

 � |ψM({θ(m)
p })⟩ = �̂�d(θM)�̂�d(θM−1)⋯�̂�d(θ1) |ψi⟩

In quantum approximate optimization algorithm (QAOA) for combinatorial optimization problems, �  is a classical Ising model 
(Farhi et al., arXiv:1411.4028). 

ℋ̂

> QAOA for a quantum state preparation
Ho & Hsieh, SciPost Phys. 6, 29 (’19).

Mbeng, Fazio & Santoro, arXiv:1906.08948.

Mbeng, Fazio & Santoro, arXiv:1911.12259.

Wauters, Mbeng & Santoro, arXiv:2003.07419.

determine �  so as to minimize the variational energy{θ(m)
1 , θ(m)

2 }

> (almost) No ambiguity in circuit structure

> Digitized adiabatic quantum commuting 
R. Brends, et.al., Nat. Commun. 6, 7654 (’15).

R. Barends, et.al., Nature 534, 222 (’16).



DQAP ansatz for 1D free fermions

!24

...

· · ·
· · ·· · ·
· · ·
· · ·
· · ·

· · ·
· · ·· · ·

...
...

...
...

...

|ψi
e−iθ

(1)
2 V̂2 e−iθ

(1)
1 V̂1

Ûd(θ1) Ûd(θ2)

e−iθ
(2)
2 V̂2 e−iθ

(2)
1 V̂1 e−iθ

(M)
1 V̂1

Ûd(θM )

<latexit sha1_base64="pWUXlwCTO8N0EfkNxgMflE11ovA="></latexit>

= V̂1 + V̂2

1D spinless free fermions with L sites at half filling
<latexit sha1_base64="U9ttJHmaygAsVF6t8g3LjBiMx08="></latexit>

H = �t
L�1X

x=1

(ĉ†x+1ĉx + ĉ†xĉx+1)� t�(ĉ†1ĉL + ĉ†Lĉ1)
<latexit sha1_base64="hzeQjEjv0eOBiBY6NeW3Lydghl0="></latexit>

V1 = �t

L/2X

x=1

(ĉ†2xĉ2x�1 + ĉ†2x�1ĉ2x)

<latexit sha1_base64="4LhtPCsKEr1xcyaY2IVCTZJZl1s="></latexit>

V2 = �t

L/2�1X

x=1

(ĉ†2x+1ĉ2x + ĉ†2xĉ2x+1)� �t(ĉ†1ĉL + ĉ†Lĉ1)

<latexit sha1_base64="gpRE9a/yJL947WrhMY+nn9yxiGU="></latexit>

� =

⇢
1 periodic
�1 anti-periodic

→ variational parameters

 � |ψM(θ)⟩ = �̂�M(θ) |ψi⟩

 ��̂�M(θ) = �̂�d(θM)�̂�d(θM−1)⋯�̂�d(θ1)

 �θm = {θ(m)
1 , θ(m)

2 }

 �θ = {θm}M
m=1

“even” bond:

“odd” bond:

T. Shirakawa, K. Seki & S. Yunoki, Phys. Rev. Research 3, 013004 (’21).



Ground state energy

!25

 �E(θ) = ⟨ψM(θ) |ℋ̂ |ψM(θ)⟩
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 �ΔE = E(θ) − Eexact(L)
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|ψi
e−iθ

(1)
2 V̂2 e−iθ

(1)
1 V̂1

Ûd(θ1) Ûd(θ2)

e−iθ
(2)
2 V̂2 e−iθ

(2)
1 V̂1 e−iθ

(M)
1 V̂1

Ûd(θM )

exact ground 
state at M=L/4

 �Δε = E(θ)/L − lim
L→∞

Eexact(L)/L

purple line: �  with �Eexact(L)/L − lim
L→∞

Eexact /L M = L /4

states �  with �  are 
independent of system size �

|ψM(θ)⟩ M < L/4
L

T. Shirakawa, K. Seki & S. Yunoki, Phys. Rev. Research 3, 013004 (’21).

DQAP ansatz



Causality cone and Lieb-Robinson bound
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 �ℋ̂ =
L/2

∑
k=1

(�̂�(k)
1 + �̂�(k)

2 )  ��̂�(k)
1 = − t ( ̂c†

2k ̂c2k−1 + h . c)  ��̂�(k)
2 = − t ( ̂c†

2k+1 ̂c2k + h . c)

i

ψM (θ)| ĉ†xĉx+1 |ψM (θ) ψM (θ)| ĉ†xĉx+1 |ψM (θ)

(b)(a)

ii

 �  E(θ) = ⟨ψM(θ) |ℋ̂ |ψM(θ)⟩

<latexit sha1_base64="iEC70C1S+851mmFGCU1oFO+lIKI="></latexit>

`i = 4M + 4
<latexit sha1_base64="HjwYVZqaK8QRqpnAywktg62exIg="></latexit>

`ii = 4M + 2

M=L/4 corresponds to the point where the causality-cone exceeds the system size L.

causality cone set by Lieb-Robinson bound

Due to the unitarity of the local time-evolution operators, these local time-
evolution operators in shaded regions do not contribute to the expectation values 

The DQAP ansatz can provide the circuit with the minimum 
number of layers (M=L/4) to describe the exact ground state

T. Shirakawa, K. Seki & S. Yunoki, Phys. Rev. Research 3, 013004 (’21).



Total time necessarily to reach the exact GS
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T. Shirakawa, K. Seki & S. Yunoki, Phys. Rev. Research 3, 013004 (’21).
optimized variational parameters 
for M=L/4 (exact solution) Total evolution time: continuous time QAP vs. discretized QAP

<latexit sha1_base64="WOvOK03Dk6UxNKi42Ga/u+z1470="></latexit>

Te↵(L) =
MX

m=1

(✓(m)
1 + ✓(m)

2 )

1D free spineless fermions: minimum gap ~ 1/L. The adiabatic theorem thus 
tells us that the evolution time necessary to obtain the exact GS is ~ L2.

Effective total evolution time:
Polynomial speedup over the continuous 
time quantum adiabatic calculation



Imaginary-time evolution
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 � |ψM(θ)⟩ = e−iθ(M)
1 �̂�1e−iθ(M)

2 �̂�2⋯e−iθ(1)
1 �̂�1e−iθ(1)

2 �̂�2 |ψi⟩

 � |ϕM(τ)⟩ = e−τ(M)
1 �̂�1e−τ(M)

2 �̂�2⋯e−τ(1)
1 �̂�1e−τ(1)

2 �̂�2 |ψi⟩

 � : variational parameters{θ(m)
1 , θ(m)

2 }M
m=1

 � : variational parameters{τ(m)
1 , τ(m)

2 }M
m=1
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 �ΔE = E(τ) − Eexact(L)
 �E(τ) = ⟨ϕM(τ) |ℋ̂ |ϕM(τ)⟩

Only M=3 layers are enough for  
the ground state with L ≤ 100 

exponentially fast 
convergence with M

T. Shirakawa, K. Seki & S. Yunoki, Phys. Rev. Research 3, 013004 (’21).



Imaginary-time evolution
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 � |ϕM(τ)⟩ = e−τ(M)
1 �̂�1e−τ(M)

2 �̂�2⋯e−τ(1)
1 �̂�1e−τ(1)

2 �̂�2 |ψi⟩

i

ψM (θ)| ĉ†xĉx+1 |ψM (θ) ψM (θ)| ĉ†xĉx+1 |ψM (θ)

(b)(a)

ii

There is no causality cone and no Lieb-Robinson bound 
because of the non-unitary of the local imaginary-time evolution 
operators

no cancellation of the imaginary time evolution operators

Non-locality due to the non-unitarity 
imaginary-time evolution

How can we implement the non-unitary 
imaginary-time evolution and the 
unnormalized state ! ?|ϕM(τ)⟩

T. Shirakawa, K. Seki & S. Yunoki, Phys. Rev. Research 3, 013004 (’21).
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Imaginary time evolution (e.g., QMC):   

Power method:  

lim
β→∞

e−βĤ |ϕ0⟩ → |ΨGS⟩

lim
n→∞

(λ − Ĥ)n |ϕ0⟩ → |ΨGS⟩
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Ĥ
2| i = Ĥ(Ĥ| i)
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Ĥ
n| i = Ĥ(Ĥn�1| i)
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In classical computation of quantum many (N)-body systems, 

matrix powers have various applications such as 


Krylov-subspace methods (e.g., Lanczos) 
Polynomial expansion methods (e.g., Chebyshev) 
Moment and cumulant methods (e.g., high-temperature expansion)

Our strategy: 
Approximate Hn by a linear combination of unitaries 

h |Ĥn| i = h |
0
BBBBB@
X

i

hiP̂i

1
CCCCCA

n

| i
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# of measurements increases 
exponentially in n or 4N

Quantum evaluation of <Hn>?

the dimension of vectors increases exponentially in N 

…

Direct treatment of Hn?

Hn is not unitary !!
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Main idea

3

Notice that [P̂2i,2i+1, P̂2 j,2 j+1] = [P̂2i�1,2i, P̂2 j�1,2 j] = 0, where
[Â, B̂] = ÂB̂ � B̂Â is the commutator of two operators Â and
B̂.

III. FORMALISM

In this section, we formulate the quantum power method.
Figure 1 illustrates an overview of the formalism based on the
higher-order derivative of the time-evolution operator, which
is decomposed approximately using the symmetric Suzuki-
Trotter decomposition.

A. Hamiltonian power as a linear combination of unitary
time-evolution operators

The time-evolution operator Û(t) of the time-independent
Hamiltonian Ĥ at time t is given by

Û(t) = e�iĤ t =

1X

n=0

(�it)n

n!
Ĥn, (7)

where t is real. The nth power of the Hamiltonian, Ĥn, is thus
given by the nth derivative of the time-evolution operator at
t = 0, i.e.,

Ĥn = in
dnÛ(t)

dtn

������
t=0
. (8)

By introducing a small time interval �⌧, we replace the time
derivative in Eq. (8) with the central finite-di↵erence as

Ĥn = Ĥn(�⌧) + O(�2
⌧), (9)

where

Ĥn(�⌧) =
nX

k=0

cn,kÛ
✓✓n

2
� k

◆
�⌧

◆
(10)

and

cn,k =
in

�n
⌧

(�1)k
 
n
k

!
. (11)

A derivation of the coe�cients cn,k is shown in Fig. 1(b).
Equations (9) and (10) imply that the nth power of the Hamil-
tonian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators at n+1
di↵erent time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,

h
Û(t)

i†
=

h
Û(t)

i�1
= Û(�t), (12)

it follows that the approximated Hamiltonian power Ĥn(�⌧)
is Hermitian and an even function of �⌧ i.e.,

Ĥn(�⌧) =
h
Ĥn(�⌧)

i†
= Ĥn(��⌧). (13)

In the last equality, we have used that cn,k in Eq. (11) is an even
(odd) function of �⌧ when n is even (odd). Since Ĥn(�⌧) is an
even function of �⌧, the systematic error EFD in odd powers
of �⌧ is absent in Eq. (9). Moreover, with the multiplication
law of the time-evolution operator Û (t) Û (t0) = Û (t + t0),
Eq. (10) can be written as

Ĥn(�⌧) =
nX
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cn,k
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. (14)

The last line in Eq. (14) indicates that the approximated
Hamiltonian power Ĥn(�⌧) satisfies a law of exponents

Ĥn(�⌧) =
h
Ĥ1(�⌧)

in
. (15)

Namely, Ĥn(�⌧) is exactly the nth power of Ĥn=1(�⌧) for n >
0. In fact, Eq. (14) can be understood simply as

Ĥn =

"
i

dÛ(t)
dt

������
t=0

#n

=
h
Ĥ1(�⌧)

in
+ O(�2

⌧). (16)

B. Richardson extrapolation

As we shall discuss in Sec. V A, the systematic error EFD
due to the finite-di↵erence scheme for the time derivatives in
Eq. (9) can be controlled by varying the time discretization
step �⌧. However, it is often practically useful to reduce the
systematic error EFD by not taking too small �⌧ in the algorith-
mic level. The Richardson extrapolation can achieve a better
error estimate by systematically eliminating lower-order er-
rors in Eq. (9).

In the Richardson extrapolation, Ĥn(�⌧) and Ĥn(�⌧/h)
with some real h (such that 0 < h , 1) are used to eliminate
the O(�2

⌧) error in Eq. (9) as

Ĥn = Ĥn
(1)(�⌧) + O(�4

⌧), (17)

where

Ĥn
(1)(�⌧) =

h2Ĥn(�⌧/h) � Ĥn(�⌧)
h2 � 1

(18)

is the first-order Richardson extrapolation of Ĥn(�⌧). Since
Ĥn(�⌧) is an even function of �⌧, Ĥn

(1)(�⌧) is also an even
function of �⌧ and thus the systematic error EFD in odd powers
of �⌧ is absent in Eq. (17).

We can use the Richardson extrapolation recursively to fur-
ther eliminate the O(�4

⌧) error in Eq. (17). Namely, the rth
order Richardson extrapolation can be obtained recurrently as

Ĥn = Ĥn
(r)(�⌧) + O(�2+2r

⌧ ), (19)
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Notice that [P̂2i,2i+1, P̂2 j,2 j+1] = [P̂2i�1,2i, P̂2 j�1,2 j] = 0, where
[Â, B̂] = ÂB̂ � B̂Â is the commutator of two operators Â and
B̂.

III. FORMALISM

In this section, we formulate the quantum power method.
Figure 1 illustrates an overview of the formalism based on the
higher-order derivative of the time-evolution operator, which
is decomposed approximately using the symmetric Suzuki-
Trotter decomposition.

A. Hamiltonian power as a linear combination of unitary
time-evolution operators

The time-evolution operator Û(t) of the time-independent
Hamiltonian Ĥ at time t is given by

Û(t) = e�iĤ t =

1X

n=0

(�it)n
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Ĥn, (7)

where t is real. The nth power of the Hamiltonian, Ĥn, is thus
given by the nth derivative of the time-evolution operator at
t = 0, i.e.,

Ĥn = in
dnÛ(t)

dtn
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. (8)

By introducing a small time interval �⌧, we replace the time
derivative in Eq. (8) with the central finite-di↵erence as
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⌧), (9)

where
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and
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A derivation of the coe�cients cn,k is shown in Fig. 1(b).
Equations (9) and (10) imply that the nth power of the Hamil-
tonian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators at n+1
di↵erent time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,

h
Û(t)

i†
=

h
Û(t)

i�1
= Û(�t), (12)

it follows that the approximated Hamiltonian power Ĥn(�⌧)
is Hermitian and an even function of �⌧ i.e.,

Ĥn(�⌧) =
h
Ĥn(�⌧)

i†
= Ĥn(��⌧). (13)

In the last equality, we have used that cn,k in Eq. (11) is an even
(odd) function of �⌧ when n is even (odd). Since Ĥn(�⌧) is an
even function of �⌧, the systematic error EFD in odd powers
of �⌧ is absent in Eq. (9). Moreover, with the multiplication
law of the time-evolution operator Û (t) Û (t0) = Û (t + t0),
Eq. (10) can be written as

Ĥn(�⌧) =
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Û

 
�⌧

2

!#n�k "
Û
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The last line in Eq. (14) indicates that the approximated
Hamiltonian power Ĥn(�⌧) satisfies a law of exponents

Ĥn(�⌧) =
h
Ĥ1(�⌧)

in
. (15)

Namely, Ĥn(�⌧) is exactly the nth power of Ĥn=1(�⌧) for n >
0. In fact, Eq. (14) can be understood simply as

Ĥn =
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dÛ(t)
dt
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t=0
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=
h
Ĥ1(�⌧)
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+ O(�2

⌧). (16)

B. Richardson extrapolation

As we shall discuss in Sec. V A, the systematic error EFD
due to the finite-di↵erence scheme for the time derivatives in
Eq. (9) can be controlled by varying the time discretization
step �⌧. However, it is often practically useful to reduce the
systematic error EFD by not taking too small �⌧ in the algorith-
mic level. The Richardson extrapolation can achieve a better
error estimate by systematically eliminating lower-order er-
rors in Eq. (9).

In the Richardson extrapolation, Ĥn(�⌧) and Ĥn(�⌧/h)
with some real h (such that 0 < h , 1) are used to eliminate
the O(�2

⌧) error in Eq. (9) as

Ĥn = Ĥn
(1)(�⌧) + O(�4

⌧), (17)

where

Ĥn
(1)(�⌧) =

h2Ĥn(�⌧/h) � Ĥn(�⌧)
h2 � 1

(18)

is the first-order Richardson extrapolation of Ĥn(�⌧). Since
Ĥn(�⌧) is an even function of �⌧, Ĥn

(1)(�⌧) is also an even
function of �⌧ and thus the systematic error EFD in odd powers
of �⌧ is absent in Eq. (17).

We can use the Richardson extrapolation recursively to fur-
ther eliminate the O(�4

⌧) error in Eq. (17). Namely, the rth
order Richardson extrapolation can be obtained recurrently as

Ĥn = Ĥn
(r)(�⌧) + O(�2+2r

⌧ ), (19)

where
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�⌧

2

2
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FIG. 1. Overview of the quantum power method proposed here. (a) The Hamiltonian powerHn is approximated as a linear combination of the
time-evolution operators [Û(�⌧/2)]n�2k for k = 0, 1, . . . , n, in which each Û(�⌧/2) is further decomposed into Ŝ (p)

2m(�⌧/2) using the symmetric
Suzuki-Trotter decomposition. Here, �⌧ is a small time interval, and thus real positive number. EFD and EST denote systematic errors due to the
finite-di↵erence scheme for the time derivatives and the symmetric Suzuki-Trotter decomposition of the time-evolution operators, respectively.
(b) An illustration of the central-finite-di↵erence scheme for the nth order derivative of the time-evolution operator Û(t) at t = 0. Pascal’s
triangle with an alternating sign in time t and power n provides coe�cients cn,k of a linear combination of the time-evolution operators that
approximates the Hamiltonian power Ĥn. The systematic error due to the finite-di↵erence scheme is EFD ⇠ O(�2

⌧). (c) A quantum circuit
for the 2mth order symmetric Suzuki-Trotter decomposition Ŝ (p)

2m(�⌧) of the time-evolution operator Û(�⌧) = e�iĤ�⌧ = e�i(ĤA+ĤB)�⌧ with the
systematic error of O(�2m+1

⌧ ). The systematic error EST due to the Suzuki-Trotter decomposition for approximating the Hamiltonian power Ĥn

in (a) is O(�2m
⌧ ) because of the factor 1/�n

⌧ in cn,k. D(p)
2m (= 2pm�1 + 1) is the circuit depth for a single Ŝ (p)

2m(�⌧), and p is typically an O(1) integer
parameter for the symmetric Suzuki-Trotter decomposition, independent of the number N of qubits. The figure refers to m = 1, p = 3, and
N = 6. The rth order Richardson extrapolation improves systematically the systematic errors as EFD ⇠ O(�2r+2

⌧ ) and EST ⇠ O(�2m+2r
⌧ ) at the

expense of increasing the number (r+1)(n+1) of terms in the linear combination. This implies that the lowest-order symmetric Suzuki-Trotter
decomposition with m = 1 is adequate to control these systematic errors consistently. The number of gates, indicated by small blue rectangles
in (c), required to approximately represent the Hamiltonian powerHn scales as O(Nn).

where

Ĥn
(r)(�⌧) =

h2rĤn
(r�1)(�⌧/h) � Ĥn

(r�1)(�⌧)

h2r � 1
(20)

with Ĥn
(0)(�⌧) ⌘ Ĥn(�⌧), and therefore the systematic error

EFD is reduced to O(�2+2r
⌧ ) after the rth order Richardson ex-

trapolation.
Ĥn

(r)(�⌧) is Hermitian because Ĥn
(0)(�⌧) is Hermitian. Since

Ĥn
(0)(�⌧) is a linear combination of n + 1 unitaries, Ĥn

(r)(�⌧)
is a linear combination of (r + 1)(n + 1) unitaries. Note
also that Ĥn

(r)(�⌧) is no longer the nth power of Ĥn=1
(r) (�⌧),

i.e., Ĥn
(r)(�⌧) ,

h
Ĥ1

(r)(�⌧)
in

, when r > 1, but obviously

Ĥn
(r)(�⌧) =

h
Ĥ1

(r)(�⌧)
in
+ O(�2+2r

⌧ ). In our numerical simu-
lations, we choose h = 2 when the Richardson extrapolation
is used.

Three additional remarks are in order regarding the prop-
erties of the approximated Hamiltonian power Ĥn(�⌧). First,
if a forward or backward, instead of central, finite-di↵erence
scheme is employed in Eq. (10), the Hermiticity and the even
dependence on �⌧ of Ĥn(�⌧) in Eq. (13) are both violated.
Therefore, the central finite-di↵erence scheme is a crucial

choice. Second, when the time-evolution operator Û(�⌧) is
approximated by a Suzuki-Trotter decomposition, the corre-
sponding Suzuki-Trotter error EST appears in Eqs. (10) and
(14). Since the implementation of a higher-order Suzuki-
Trotter decomposition on quantum computers requires many
layers of gates, it is essential to control EST with a lower order
Suzuki-Trotter decomposition. Third, if a symmetric Suzuki-
Trotter decomposition, which retains the equivalence between
the inverse of the time evolution and the time-reversed evo-
lution [the right-most equality in Eq. (12)], is employed to
decompose the time-evolution operators in Eqs. (10) and (14),
the resulting Ĥn(�⌧) still satisfies the Hermiticity and the even
dependence on �⌧. Therefore, it is important to adopt a sym-
metric Suzuki-Trotter decomposition (see Sec. III C 3 for de-
tails).

C. Suzuki-Trotter decomposition

The formalism so far is based on the exact time-evolution
operator Û(t) in Eq. (7). However, on quantum computers,
the time-evolution operator with its exponent composed of

Hn is approximated by a linear 
combination of (n+1) unitaries

...

<latexit sha1_base64="/sOcnx7HhQxcIm7VoAr2eqH9yyY="></latexit>

in a time-discretized form, e.g., 
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Notice that [P̂2i,2i+1, P̂2 j,2 j+1] = [P̂2i�1,2i, P̂2 j�1,2 j] = 0, where
[Â, B̂] = ÂB̂ � B̂Â is the commutator of two operators Â and
B̂.

III. FORMALISM

In this section, we formulate the quantum power method.
Figure 1 illustrates an overview of the formalism based on the
higher-order derivative of the time-evolution operator, which
is decomposed approximately using the symmetric Suzuki-
Trotter decomposition.

A. Hamiltonian power as a linear combination of unitary
time-evolution operators

The time-evolution operator Û(t) of the time-independent
Hamiltonian Ĥ at time t is given by

Û(t) = e�iĤ t =
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Ĥn, (7)

where t is real. The nth power of the Hamiltonian, Ĥn, is thus
given by the nth derivative of the time-evolution operator at
t = 0, i.e.,
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By introducing a small time interval �⌧, we replace the time
derivative in Eq. (8) with the central finite-di↵erence as
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A derivation of the coe�cients cn,k is shown in Fig. 1(b).
Equations (9) and (10) imply that the nth power of the Hamil-
tonian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators at n+1
di↵erent time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,

h
Û(t)

i†
=
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it follows that the approximated Hamiltonian power Ĥn(�⌧)
is Hermitian and an even function of �⌧ i.e.,

Ĥn(�⌧) =
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In the last equality, we have used that cn,k in Eq. (11) is an even
(odd) function of �⌧ when n is even (odd). Since Ĥn(�⌧) is an
even function of �⌧, the systematic error EFD in odd powers
of �⌧ is absent in Eq. (9). Moreover, with the multiplication
law of the time-evolution operator Û (t) Û (t0) = Û (t + t0),
Eq. (10) can be written as
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Û

 
�⌧

2

!#n�2k

=

nX

k=0

cn,k

"
Û
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The last line in Eq. (14) indicates that the approximated
Hamiltonian power Ĥn(�⌧) satisfies a law of exponents

Ĥn(�⌧) =
h
Ĥ1(�⌧)

in
. (15)

Namely, Ĥn(�⌧) is exactly the nth power of Ĥn=1(�⌧) for n >
0. In fact, Eq. (14) can be understood simply as
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B. Richardson extrapolation

As we shall discuss in Sec. V A, the systematic error EFD
due to the finite-di↵erence scheme for the time derivatives in
Eq. (9) can be controlled by varying the time discretization
step �⌧. However, it is often practically useful to reduce the
systematic error EFD by not taking too small �⌧ in the algorith-
mic level. The Richardson extrapolation can achieve a better
error estimate by systematically eliminating lower-order er-
rors in Eq. (9).

In the Richardson extrapolation, Ĥn(�⌧) and Ĥn(�⌧/h)
with some real h (such that 0 < h , 1) are used to eliminate
the O(�2

⌧) error in Eq. (9) as

Ĥn = Ĥn
(1)(�⌧) + O(�4

⌧), (17)

where

Ĥn
(1)(�⌧) =

h2Ĥn(�⌧/h) � Ĥn(�⌧)
h2 � 1
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is the first-order Richardson extrapolation of Ĥn(�⌧). Since
Ĥn(�⌧) is an even function of �⌧, Ĥn

(1)(�⌧) is also an even
function of �⌧ and thus the systematic error EFD in odd powers
of �⌧ is absent in Eq. (17).

We can use the Richardson extrapolation recursively to fur-
ther eliminate the O(�4

⌧) error in Eq. (17). Namely, the rth
order Richardson extrapolation can be obtained recurrently as

Ĥn = Ĥn
(r)(�⌧) + O(�2+2r

⌧ ), (19)
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In this section, we formulate the quantum power method.
Figure 1 illustrates an overview of the formalism based on the
higher-order derivative of the time-evolution operator, which
is decomposed approximately using the symmetric Suzuki-
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A. Hamiltonian power as a linear combination of unitary
time-evolution operators

The time-evolution operator Û(t) of the time-independent
Hamiltonian Ĥ at time t is given by

Û(t) = e�iĤ t =

1X

n=0

(�it)n

n!
Ĥn, (7)

where t is real. The nth power of the Hamiltonian, Ĥn, is thus
given by the nth derivative of the time-evolution operator at
t = 0, i.e.,

Ĥn = in
dnÛ(t)

dtn
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t=0
. (8)

By introducing a small time interval �⌧, we replace the time
derivative in Eq. (8) with the central finite-di↵erence as

Ĥn = Ĥn(�⌧) + O(�2
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where
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✓✓n

2
� k

◆
�⌧

◆
(10)

and

cn,k =
in

�n
⌧

(�1)k
 
n
k

!
. (11)

A derivation of the coe�cients cn,k is shown in Fig. 1(b).
Equations (9) and (10) imply that the nth power of the Hamil-
tonian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators at n+1
di↵erent time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,

h
Û(t)

i†
=

h
Û(t)

i�1
= Û(�t), (12)

it follows that the approximated Hamiltonian power Ĥn(�⌧)
is Hermitian and an even function of �⌧ i.e.,

Ĥn(�⌧) =
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Ĥn(�⌧)

i†
= Ĥn(��⌧). (13)

In the last equality, we have used that cn,k in Eq. (11) is an even
(odd) function of �⌧ when n is even (odd). Since Ĥn(�⌧) is an
even function of �⌧, the systematic error EFD in odd powers
of �⌧ is absent in Eq. (9). Moreover, with the multiplication
law of the time-evolution operator Û (t) Û (t0) = Û (t + t0),
Eq. (10) can be written as
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The last line in Eq. (14) indicates that the approximated
Hamiltonian power Ĥn(�⌧) satisfies a law of exponents

Ĥn(�⌧) =
h
Ĥ1(�⌧)

in
. (15)

Namely, Ĥn(�⌧) is exactly the nth power of Ĥn=1(�⌧) for n >
0. In fact, Eq. (14) can be understood simply as

Ĥn =

"
i

dÛ(t)
dt

������
t=0

#n

=
h
Ĥ1(�⌧)

in
+ O(�2

⌧). (16)

B. Richardson extrapolation

As we shall discuss in Sec. V A, the systematic error EFD
due to the finite-di↵erence scheme for the time derivatives in
Eq. (9) can be controlled by varying the time discretization
step �⌧. However, it is often practically useful to reduce the
systematic error EFD by not taking too small �⌧ in the algorith-
mic level. The Richardson extrapolation can achieve a better
error estimate by systematically eliminating lower-order er-
rors in Eq. (9).

In the Richardson extrapolation, Ĥn(�⌧) and Ĥn(�⌧/h)
with some real h (such that 0 < h , 1) are used to eliminate
the O(�2

⌧) error in Eq. (9) as

Ĥn = Ĥn
(1)(�⌧) + O(�4

⌧), (17)

where

Ĥn
(1)(�⌧) =

h2Ĥn(�⌧/h) � Ĥn(�⌧)
h2 � 1

(18)

is the first-order Richardson extrapolation of Ĥn(�⌧). Since
Ĥn(�⌧) is an even function of �⌧, Ĥn

(1)(�⌧) is also an even
function of �⌧ and thus the systematic error EFD in odd powers
of �⌧ is absent in Eq. (17).

We can use the Richardson extrapolation recursively to fur-
ther eliminate the O(�4

⌧) error in Eq. (17). Namely, the rth
order Richardson extrapolation can be obtained recurrently as

Ĥn = Ĥn
(r)(�⌧) + O(�2+2r

⌧ ), (19)
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A derivation of the coe�cients cn,k is shown in Fig. 1(b).
Equations (9) and (10) imply that the nth power of the Hamil-
tonian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators at n+1
di↵erent time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,
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it follows that the approximated Hamiltonian power Ĥn(�⌧)
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The last line in Eq. (14) indicates that the approximated
Hamiltonian power Ĥn(�⌧) satisfies a law of exponents

Ĥn(�⌧) =
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Ĥ1(�⌧)

in
. (15)

Namely, Ĥn(�⌧) is exactly the nth power of Ĥn=1(�⌧) for n >
0. In fact, Eq. (14) can be understood simply as
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1X

n=0

(�it)n

n!
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Û(t)

i�1
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The last line in Eq. (14) indicates that the approximated
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As we shall discuss in Sec. V A, the systematic error EFD
due to the finite-di↵erence scheme for the time derivatives in
Eq. (9) can be controlled by varying the time discretization
step �⌧. However, it is often practically useful to reduce the
systematic error EFD by not taking too small �⌧ in the algorith-
mic level. The Richardson extrapolation can achieve a better
error estimate by systematically eliminating lower-order er-
rors in Eq. (9).

In the Richardson extrapolation, Ĥn(�⌧) and Ĥn(�⌧/h)
with some real h (such that 0 < h , 1) are used to eliminate
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function of �⌧ and thus the systematic error EFD in odd powers
of �⌧ is absent in Eq. (17).

We can use the Richardson extrapolation recursively to fur-
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⌧) error in Eq. (17). Namely, the rth
order Richardson extrapolation can be obtained recurrently as
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Symmetric Suzuki-Trotter approximation

Hn is approximated  
by a sum of (n+1) unitaries
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Namely, k(p)
m is the solution of (p�1)

h
k(p)

m

i2m�1
+
h
k̃(p)

m

i2m�1
= 0

under the condition (p � 1)k(p)
m + k̃(p)

m = 1. Since Ŝ (p)
2m(�⌧)

satisfies

Ŝ (p)
2m(�⌧)Ŝ

(p)
2m(��⌧) = Ŝ (p)

2m(��⌧)Ŝ (p)
2m(�⌧) = Î, (30)

the residual terms of even power such as x2mR̂2m are absent
in the exponent of Ŝ (p)

2m(�⌧) in Eq. (29), shown by the same
argument for m = 1. Some of the higher-order symmetric
Suzuki-Trotter decompositions are explicitly provided in Ap-
pendix A 1. As shown in Appendix A 2, the parameter p af-
fects the accuracy of the decomposition for a given m.

3. Unitarity and time-reversed evolution of Ŝ (p)
2m(�⌧)

As implied in Eq. (30), Ŝ (p)
2m(�⌧) retains not only the uni-

tarity but also the equivalence between the inverse and time-
reversed evolution, i.e.,

h
Ŝ (p)

2m(�⌧)
i†
=
h
Ŝ (p)

2m(�⌧)
i�1
= Ŝ (p)

2m(��⌧). (31)

Therefore, the Hermiticity and the even dependence on �⌧ of
Ĥn(�⌧) in Eq. (13) are both retained even when the exact
time-evolution operators in Eqs. (10) and (14) are approxi-
mated by simply replacing them with Ŝ (p)

2m’s.
In contrast, an asymmetric Suzuki-Trotter decomposition

F̂(�⌧), such as F̂(�⌧) = exĤA exĤB , results in
h
F̂(�⌧)

i†
=
h
F̂(�⌧)

i�1
, F̂(��⌧). (32)

Thus, F̂(�⌧) retains the unitarity but the inverse is no longer
equivalent to the time-reversed evolution. In this case, either
the Hermiticity or the even dependence on �⌧ of Ĥn(�⌧) in
Eq. (13) is violated if the exact time-evolution operators in
Eqs. (10) and (14) are approximated by F̂’s. For example,
if we consider an operator ĤH(�⌧) = i[F̂(�⌧) � F̂†(�⌧)]/�⌧
to approximate i[Û(�⌧) � Û(��⌧)]/�⌧, it satisfies the Her-
miticity but is no longer an even function of �⌧ as ĤH(�⌧) =
[ĤH(�⌧)]† , ĤH(��⌧). On the other hand, an operator
ĤE(�⌧) = i[F̂(�⌧) � F̂(��⌧)]/�⌧ is an even function of �⌧ but
no longer satisfies the Hermiticity as ĤE(�⌧) = ĤE(��⌧) ,
[ĤE(�⌧)]†. Therefore, the symmetric Suzuki-Trotter decom-
position Ŝ (p)

2m(�⌧) is essential for the resulting Suzuki-Trotter
approximated Ĥn(�⌧) to retain both the Hermiticity and the
even dependence on �⌧. Note that asymmetric Suzuki-Trotter
decompositions and their connection to symmetric ones have
been studied in Ref. [73].

4. Circuit depth for a single time-evolution operator approximated
by the Suzuki-Trotter decomposition

We now consider the circuit depth D(p)
2m required for a single

time-evolution operator Û(�⌧) approximated by the symmet-
ric Suzuki-Trotter decomposition Ŝ (p)

2m(�⌧), as in Eq. (27) [also

see Fig. 1(c)]. We define D(p)
2m as the number of noncommuting

exponentials appearing in Ŝ (p)
2m(�⌧). For example, the depth of

Ŝ (p)
2 (�⌧) is D(p)

2 = 3. Since Ŝ (p)
2m(�⌧) consists of a product of

p Ŝ (p)
2m�2’s, the depth of Ŝ (p)

2m(�⌧) without contracting commut-
ing exponentials is pD(p)

2m�2. However, since Ŝ (p)
2m(�⌧) involves

p � 1 products of two consecutive Ŝ (p)
2m�2’s, between which

two commuting exponentials reside, p�1 exponentials can be
contracted. We thus obtain that D(p)

2m = pD(p)
2m�2 � (p � 1) or

equivalently D(p)
2m � 1 = p[D(p)

2m�2 � 1]. By using this relation
recursively, we can find that

D(p)
2m � 1 = p

h
D(p)

2m�2 � 1
i

= p2
h
D(p)

2m�4 � 1
i

= · · ·
= pm�1

h
D(p)

2 � 1
i
. (33)

Substituting D(p)
2 = 3 in Eq. (33) yields that

D(p)
2m = 2pm�1 + 1. (34)

Recalling that p is a typically O(1) integer parameter, the
depth increases exponentially with m but is independent of
the number N of qubits. Therefore, the lower-order Suzuki-
Trotter decomposition is highly desirable to shallow the depth
of a quantum circuit.

D. Quantum power method

While the time-evolution operators satisfy the multiplica-
tion law Û(�⌧)Û(�0⌧) = Û(�⌧ + �0⌧), this is no longer cor-
rect when the time-evolution operators are approximated by
the Suzuki-Trotter decomposition, i.e., Ŝ (p)

2m(�⌧)Ŝ
(p)
2m(�0⌧) ,

Ŝ (p)
2m(�⌧ + �0⌧). Therefore, it is crucial to carefully con-

sider when the time-evolution operators in the approximated
Hamiltonian power Ĥn(�⌧) should be replaced with the sym-
metric Suzuki-Trotter decomposition, either in Eq. (10) or in
Eq. (14), implying that there exist two di↵erent routes to for-
mulate the quantum power method. As we shall show here
and in Appendix B, these two approaches provide two di↵er-
ent algorithms of the quantum power method that di↵er in the
scaling of complexity but control the systematic errors EFD
and EST with essentially the same accuracy. In this section,
we formulate the quantum power method based on Eq. (14)
that scales much better when the power n is large. In Ap-
pendix B, we describe an alternative algorithm formulated on
the basis of Eq. (10), which is favored when the power n is
small (n 6 4).

By incorporating the symmetric Suzuki-Trotter decompo-
sition into the approximated Hamiltonian power Ĥn(�⌧) in
Eq. (14), the Hamiltonian power Ĥn is finally approximated
as

Ĥn = Ĥn
ST(�⌧) + O(�2

⌧) + O(�2m
⌧ ), (35)where
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where O(�2
⌧) represents the systematic error EFD due to the

finite-di↵erence scheme for the time derivatives, and O(�2m
⌧ )

denotes the systematic error EST due to the Suzuki-Trotter de-
composition of the time-evolution operators. Ĥn

ST(�⌧) is the
central quantity in the quantum power method that approxi-
mates the Hamiltonian power Ĥn as

Ĥn
ST(�⌧) =

nX

k=0

cn,k

"
Ŝ (p)

2m

 
�⌧

2

!#n�2k

(36)

=
in

�n
⌧

"
Ŝ (p)
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�⌧

2

!
� Ŝ (p)
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��⌧

2

!#n

. (37)

Here, we have used the fact that
h
Ŝ (p)

2m

⇣
�⌧
2

⌘i�1
= Ŝ (p)

2m

⇣
��⌧2

⌘
,

as in Eq. (31), but note that Ŝ (p)
2m

⇣
�⌧
2

⌘
Ŝ (p)

2m

⇣
�⌧
2

⌘
, Ŝ (p)

2m (�⌧). It
should also be noticed that the order O(�2m

⌧ ) of the Suzuki-
Trotter error EST in Eq. (35) is decreased by one from the
naively expected order O(�2m+1

⌧ ) as in Eq. (27), because of
the factor 1/�n

⌧ in cn,k.
Equation (35) already reveals a remarkable advantage in the

quantum power method formulated on the basis of Eq. (14):
in order to control the systematic errors EFD and EST with the
same order of accuracy, it is enough to adopt the lowest-order
Suzuki-Trotter decomposition with m = 1, independently of
the power n. This is in sharp contrast to the other formalism
based on Eq. (10), in which the order m of the Suzuki-Trotter
decomposition has to be increased with the power n and, as
described in more details in Appendix B, essentially the com-
plexity increases exponentially with the power n.

Equation (37) indicates that Ĥn
ST(�⌧) satisfies the law of

exponents

Ĥn
ST(�⌧) =

h
Ĥ1

ST(�⌧)
in
. (38)

Moreover, Ĥn
ST(�⌧) is Hermitian and an even function of �⌧,

i.e.,

Ĥn
ST(�⌧) =

h
Ĥn

ST(�⌧)
i†
= Ĥn

ST(��⌧), (39)

indicating that the systematic error EST in odd powers of �⌧ is
absent in Eq. (35). Therefore, recalling that the systematic er-
ror EFD in odd powers of �⌧ is also absent (see Sec. III B), the
Richardson extrapolation can eliminate the finite-di↵erence
error EFD and the Suzuki-Trotter error EST simultaneously as

Ĥn = Ĥn
ST(r)(�⌧) + O(�2+2r

⌧ ) + O(�2m+2r
⌧ ), (40)

where Ĥn
ST(r)(�⌧) is the rth order Richardson extrapolation of

the approximated Hamiltonian power, i.e.,

Ĥn
ST(r)(�⌧) =

h2rĤn
ST(r�1)(�⌧/h) � Ĥn

ST(r�1)(�⌧)

h2r � 1
, (41)

with Ĥn
ST(0)(�⌧) ⌘ Ĥn

ST(�⌧). Since Ĥn
ST(0)(�⌧) is a linear com-

bination of n + 1 unitaries Ŝ (p)
2m, Ĥn

ST(r)(�⌧) is a linear com-
bination of (r + 1)(n + 1) unitaries Ŝ (p)

2m. Equation (40) re-
veals another significant feature of the quantum power method

that only polynomial resources with the lowest-order symmet-
ric Suzuki-Trotter decomposition su�ce to systematically and
consistently eliminate the lower order systematic errors in EFD
and EST. In Sec. V A, we will show by numerical simulations
that these systematic errors in the approximated Hamiltonian
power are well controlled with the time-discretization step �⌧
for the power n as large as 100.

For the application purpose of the quantum power method,
it is important that the symmetry of the Hamiltonian Ĥ is still
respected in the approximated Hamiltonian power Ĥn

ST(r)(�⌧).
This is indeed the case in the quantum power method formu-
lated here because

h
Ĥ , Ĥn

ST(r)(�⌧)
i
= O(�2m+2r

⌧ ). (42)

Therefore, the symmetry of the Hamiltonian Ĥ is preserved
in the quantum power method within the systematic error EST
due to the Suzuki-Trotter decomposition that can be well con-
trolled. Notice that there is no contribution from the sys-
tematic error EFD due to the finite-di↵erence scheme of the
time derivatives in the right hand side of Eq. (42) becauseh
Ĥ , Ĥn

(r)(�⌧)
i
= 0.

Figure 1 summarizes the quantum power method formu-
lated here. In the quantum power method, the Hamilto-
nian power Ĥn is approximated to Ĥn

ST(�⌧) represented as a
linear combination of the n + 1 Suzuki-Trotter decomposed
time-evolution operators {[Ŝ (p)

2m(�⌧/2)]n�2k]}nk=0. The system-
atic error EFD due to the finite-di↵erence scheme for the time
derivatives is O(�2

⌧), and the systematic error EST due to the
Suzuki-Trotter decomposition of the time-evolution operators
is O(�2m

⌧ ). These systematic errors EFD and EST can be both
improved systematically by the rth-order Richardson extrap-
olation to O(�2+2r

⌧ ) and O(�2m+2r
⌧ ), respectively. While the

linear combination of the Suzuki-Trotter decomposed time-
evolution operators is treated classically, each Suzuki-Trotter
decomposed time-evolution operator [Ŝ (p)

2m(�⌧/2)]n�2k is eval-
uated on quantum computers. As illustrated in Fig. 1(c),
a quantum circuit for a single Ŝ (p)

2m(±�⌧/2) has the circuit
depth D(p)

2m = 2pm�1 + 1, and thus the circuit depth required
for Ĥn

ST(�⌧) is at most O(n) with a prefactor D(p)
2m ⇠ O(1).

Hence, assuming that Ĥ consists of O(N) local terms, the
number of gates required for Ĥn

ST(�⌧) is O(Nn). When the
rth-order Richardson extrapolation is employed, the num-
ber of gates required remains the same, but the number of
terms in the linear combination of the Suzuki-Trotter decom-
posed time-evolution operators is O(rn). Therefore, for ex-
ample, to evaluate the expectation value of Ĥn

ST(r)(�⌧) with
respect to a given state | i, the O(rn) state overlaps such as
h |[Ŝ (p)

2m(�⌧/2)]n�2k | i have to be estimated. However, these
quantities can be evaluated on quantum computers separately
in parallel. Considering the gate count that scales as O(Nn)
for approximating the Hamiltonian power Ĥn, the quantum
power method is a potentially promising application for near-
term quantum devices.

In contrast to the quantum power method, the direct evalu-
ation of the expectation value h |Ĥn| i requires the average
of O(Nn) operators, possibly containing long strings of Pauli

3

Notice that [P̂2i,2i+1, P̂2 j,2 j+1] = [P̂2i�1,2i, P̂2 j�1,2 j] = 0, where
[Â, B̂] = ÂB̂ � B̂Â is the commutator of two operators Â and
B̂.

III. FORMALISM

In this section, we formulate the quantum power method.
Figure 1 illustrates an overview of the formalism based on the
higher-order derivative of the time-evolution operator, which
is decomposed approximately using the symmetric Suzuki-
Trotter decomposition.

A. Hamiltonian power as a linear combination of unitary
time-evolution operators

The time-evolution operator Û(t) of the time-independent
Hamiltonian Ĥ at time t is given by

Û(t) = e�iĤ t =

1X

n=0

(�it)n

n!
Ĥn, (7)

where t is real. The nth power of the Hamiltonian, Ĥn, is thus
given by the nth derivative of the time-evolution operator at
t = 0, i.e.,

Ĥn = in
dnÛ(t)

dtn

������
t=0
. (8)

By introducing a small time interval �⌧, we replace the time
derivative in Eq. (8) with the central finite-di↵erence as

Ĥn = Ĥn(�⌧) + O(�2
⌧), (9)

where

Ĥn(�⌧) =
nX

k=0

cn,kÛ
✓✓n

2
� k

◆
�⌧

◆
(10)

and

cn,k =
in

�n
⌧

(�1)k
 
n
k

!
. (11)

A derivation of the coe�cients cn,k is shown in Fig. 1(b).
Equations (9) and (10) imply that the nth power of the Hamil-
tonian, Ĥn, can be approximated with a controlled accuracy
as a linear combination of the time-evolution operators at n+1
di↵erent time variables.

From the unitarity of the time-evolution operator and its
accordance with the time-reversed evolution,

h
Û(t)

i†
=

h
Û(t)

i�1
= Û(�t), (12)

it follows that the approximated Hamiltonian power Ĥn(�⌧)
is Hermitian and an even function of �⌧ i.e.,

Ĥn(�⌧) =
h
Ĥn(�⌧)

i†
= Ĥn(��⌧). (13)

In the last equality, we have used that cn,k in Eq. (11) is an even
(odd) function of �⌧ when n is even (odd). Since Ĥn(�⌧) is an
even function of �⌧, the systematic error EFD in odd powers
of �⌧ is absent in Eq. (9). Moreover, with the multiplication
law of the time-evolution operator Û (t) Û (t0) = Û (t + t0),
Eq. (10) can be written as

Ĥn(�⌧) =
nX

k=0

cn,k

"
Û

 
�⌧

2

!#n�2k

=

nX

k=0

cn,k

"
Û

 
�⌧

2

!#n�k "
Û

 
��⌧

2

!#k

=
in

�n
⌧

"
Û

 
�⌧

2

!
� Û

 
��⌧

2

!#n

. (14)

The last line in Eq. (14) indicates that the approximated
Hamiltonian power Ĥn(�⌧) satisfies a law of exponents

Ĥn(�⌧) =
h
Ĥ1(�⌧)

in
. (15)

Namely, Ĥn(�⌧) is exactly the nth power of Ĥn=1(�⌧) for n >
0. In fact, Eq. (14) can be understood simply as

Ĥn =

"
i

dÛ(t)
dt

������
t=0

#n

=
h
Ĥ1(�⌧)

in
+ O(�2

⌧). (16)

B. Richardson extrapolation

As we shall discuss in Sec. V A, the systematic error EFD
due to the finite-di↵erence scheme for the time derivatives in
Eq. (9) can be controlled by varying the time discretization
step �⌧. However, it is often practically useful to reduce the
systematic error EFD by not taking too small �⌧ in the algorith-
mic level. The Richardson extrapolation can achieve a better
error estimate by systematically eliminating lower-order er-
rors in Eq. (9).

In the Richardson extrapolation, Ĥn(�⌧) and Ĥn(�⌧/h)
with some real h (such that 0 < h , 1) are used to eliminate
the O(�2

⌧) error in Eq. (9) as

Ĥn = Ĥn
(1)(�⌧) + O(�4

⌧), (17)

where

Ĥn
(1)(�⌧) =

h2Ĥn(�⌧/h) � Ĥn(�⌧)
h2 � 1

(18)

is the first-order Richardson extrapolation of Ĥn(�⌧). Since
Ĥn(�⌧) is an even function of �⌧, Ĥn

(1)(�⌧) is also an even
function of �⌧ and thus the systematic error EFD in odd powers
of �⌧ is absent in Eq. (17).

We can use the Richardson extrapolation recursively to fur-
ther eliminate the O(�4

⌧) error in Eq. (17). Namely, the rth
order Richardson extrapolation can be obtained recurrently as

Ĥn = Ĥn
(r)(�⌧) + O(�2+2r

⌧ ), (19)

number of the gates: k-local Hamiltonian  
~ O(knN) for spin models 
~ O(knN logN) for fermionic models
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Ĥn = in
dnÛ(t)

dtn
t=0
=

in

�n
⌧

Û
�⌧

2
� Û ��⌧

2

n

+ EFD =
in

�n
⌧

Ŝ (p)
2m
�⌧

2
� Ŝ (p)

2m �
�⌧

2

n

+ EFD + EST =

n

k=0
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�⌧
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n�2k
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FIG. 1. Overview of the quantum power method proposed here. (a) The Hamiltonian powerHn is approximated as a linear combination of the
time-evolution operators [Û(�⌧/2)]n�2k for k = 0, 1, . . . , n, in which each Û(�⌧/2) is further decomposed into Ŝ (p)

2m(�⌧/2) using the symmetric
Suzuki-Trotter decomposition. Here, �⌧ is a small time interval, and thus real positive number. EFD and EST denote systematic errors due to the
finite-di↵erence scheme for the time derivatives and the symmetric Suzuki-Trotter decomposition of the time-evolution operators, respectively.
(b) An illustration of the central-finite-di↵erence scheme for the nth order derivative of the time-evolution operator Û(t) at t = 0. Pascal’s
triangle with an alternating sign in time t and power n provides coe�cients cn,k of a linear combination of the time-evolution operators that
approximates the Hamiltonian power Ĥn. The systematic error due to the finite-di↵erence scheme is EFD ⇠ O(�2

⌧). (c) A quantum circuit
for the 2mth order symmetric Suzuki-Trotter decomposition Ŝ (p)

2m(�⌧) of the time-evolution operator Û(�⌧) = e�iĤ�⌧ = e�i(ĤA+ĤB)�⌧ with the
systematic error of O(�2m+1

⌧ ). The systematic error EST due to the Suzuki-Trotter decomposition for approximating the Hamiltonian power Ĥn

in (a) is O(�2m
⌧ ) because of the factor 1/�n

⌧ in cn,k. D(p)
2m (= 2pm�1 + 1) is the circuit depth for a single Ŝ (p)

2m(�⌧), and p is typically an O(1) integer
parameter for the symmetric Suzuki-Trotter decomposition, independent of the number N of qubits. The figure refers to m = 1, p = 3, and
N = 6. The rth order Richardson extrapolation improves systematically the systematic errors as EFD ⇠ O(�2r+2

⌧ ) and EST ⇠ O(�2m+2r
⌧ ) at the

expense of increasing the number (r+1)(n+1) of terms in the linear combination. This implies that the lowest-order symmetric Suzuki-Trotter
decomposition with m = 1 is adequate to control these systematic errors consistently. The number of gates, indicated by small blue rectangles
in (c), required to approximately represent the Hamiltonian powerHn scales as O(Nn).

where

Ĥn
(r)(�⌧) =

h2rĤn
(r�1)(�⌧/h) � Ĥn

(r�1)(�⌧)

h2r � 1
(20)

with Ĥn
(0)(�⌧) ⌘ Ĥn(�⌧), and therefore the systematic error

EFD is reduced to O(�2+2r
⌧ ) after the rth order Richardson ex-

trapolation.
Ĥn

(r)(�⌧) is Hermitian because Ĥn
(0)(�⌧) is Hermitian. Since

Ĥn
(0)(�⌧) is a linear combination of n + 1 unitaries, Ĥn

(r)(�⌧)
is a linear combination of (r + 1)(n + 1) unitaries. Note
also that Ĥn

(r)(�⌧) is no longer the nth power of Ĥn=1
(r) (�⌧),

i.e., Ĥn
(r)(�⌧) ,

h
Ĥ1

(r)(�⌧)
in

, when r > 1, but obviously

Ĥn
(r)(�⌧) =

h
Ĥ1

(r)(�⌧)
in
+ O(�2+2r

⌧ ). In our numerical simu-
lations, we choose h = 2 when the Richardson extrapolation
is used.

Three additional remarks are in order regarding the prop-
erties of the approximated Hamiltonian power Ĥn(�⌧). First,
if a forward or backward, instead of central, finite-di↵erence
scheme is employed in Eq. (10), the Hermiticity and the even
dependence on �⌧ of Ĥn(�⌧) in Eq. (13) are both violated.
Therefore, the central finite-di↵erence scheme is a crucial

choice. Second, when the time-evolution operator Û(�⌧) is
approximated by a Suzuki-Trotter decomposition, the corre-
sponding Suzuki-Trotter error EST appears in Eqs. (10) and
(14). Since the implementation of a higher-order Suzuki-
Trotter decomposition on quantum computers requires many
layers of gates, it is essential to control EST with a lower order
Suzuki-Trotter decomposition. Third, if a symmetric Suzuki-
Trotter decomposition, which retains the equivalence between
the inverse of the time evolution and the time-reversed evo-
lution [the right-most equality in Eq. (12)], is employed to
decompose the time-evolution operators in Eqs. (10) and (14),
the resulting Ĥn(�⌧) still satisfies the Hermiticity and the even
dependence on �⌧. Therefore, it is important to adopt a sym-
metric Suzuki-Trotter decomposition (see Sec. III C 3 for de-
tails).

C. Suzuki-Trotter decomposition

The formalism so far is based on the exact time-evolution
operator Û(t) in Eq. (7). However, on quantum computers,
the time-evolution operator with its exponent composed of

N qubits 2-local Hamiltonian
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Ĥ

1 ,Ĥ
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FIG. 3. (a)–(c): The distance d
⇣
Ĥn, Ĥn

ST(r)(�⌧)
⌘

between the exact Hamiltonian power Ĥn and the approximated Hamiltonian power Ĥn
ST(r)(�⌧)

given in Eq. (4) without the Richardson extrapolation (r = 0) as a function of �2
⌧ for (a) n = 1, (b) n = 2, and (c) n = 3. (d)–(f): Same as

(a)–(c) but with the first-order Richardson extrapolation (r = 1) given in Eq. (12) as a function of �4
⌧. The Hamiltonian Ĥ is for the spin-1/2

Heisenberg model on an N-qubit ring given in Eq. (58). The symmetric Suzuki-Trotter decompositions Ŝ 2 (empty symbols) and Ŝ (3)
4 (filled

small symbols) are used. However, these results are on top of each other, as is expected. The error bar indicates standard error of the mean.
The solid lines are guide for the eye. Note that each panel employs a di↵erent y-axis scale.

Ĥn
ST(r=0)(�⌧) is O(�2

⌧), the distance scales almost linearly in �2
⌧

for each N. The distance simply increases with increasing N
and n. Figures 3(d)–3(f) show the results with the first-order
Richardson extrapolation (r = 1). For each n, the distance
with the Richardson extrapolation is an order of magnitude
smaller than that without the Richardson extrapolation. The
leading systematic error in Ĥn

ST(r=1)(�⌧) is O(�4
⌧), and the dis-

tance indeed scales almost linearly in �4
⌧. As expected from

Eq. (11), essentially no di↵erence can be found between the
results with Ŝ 2 and Ŝ (3)

4 , indicated respectively by empty and
filled symbols in Fig. 3. These results clearly demonstrate that
the systematic errors in approximating the Hamiltonian power
Ĥn are well controlled.

Figure 4(a) shows the n dependence of the distance for
N = 24 with various values of �⌧ calculated using the lowest-
order symmetric Suzuki-Trotter decomposition Ŝ 2. The dis-
tance first increases with n and tends to saturate at n ⇠ 100.
It is remarkable to find in Fig. 4(b) that, even with the large
power exponents as large as n = 100, the linear dependence of
the distance on �2

⌧ remains in a wide range of �⌧ (�⌧J . 0.1)
and the distance is smoothly extrapolated to zero in the limit of

�⌧ ! 0, clearly demonstrating the controlled accuracy of the
quantum power method. Figures 4(c) and 4(d) show the same
results but obtained by using the first-order Richardson ex-
trapolation (r = 1), for which the systematic errors in approx-
imating the Hamiltonian power Ĥn are expected to be O(�4

⌧).
Indeed, our numerical simulations find the linear dependence
of distance on �4

⌧ for at least �⌧J . 0.05 when n = 100 [see
the inset in Fig. 4(d)]. Notice also that the distance itself be-
comes smaller by the factor of approximately 5 even for large
n when the first-order Richardson extrapolation is employed.

C. Ground-state energy and fidelity

We now perform numerical simulations of the Krylov-
subspace diagonalization combined with the quantum power
method to calculate the ground-state energy and fidelity of the
spin spin-1/2 Heisenberg model described by the Hamiltonian
Ĥ in Eq. (58) on a periodic chain of N = 16 sites (i.e, qubits).
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Suzuki-Trotter decomposition of the time-evolution operator,
we divide the Hamiltonian into two parts as

Ĥ = ĤA + ĤB, (61)

with

ĤA =
J
2

N/2X

i=1

P̂2i,2i+1 (62)

and

ĤB =
J
2

N/2X

i=1

P̂2i�1,2i. (63)

Notice that [P̂2i,2i+1, P̂2 j,2 j+1] = [P̂2i�1,2i, P̂2 j�1,2 j] = 0, where
[Â, B̂] = ÂB̂ � B̂Â is the commutator of two operators Â and
B̂.

For the one-dimensional spin-1/2 Heisenberg model Ĥ =
ĤA + ĤB given in Eqs. (58) and (61), the time-evolution op-
erator Û(t) = e�iĤ t is constituted by two elementary time-
evolution operators associated with ĤA and ĤB. Let us first
introduce the exponential-swap (e-swap) gate Ûi, j [75–79]

Ûi, j(✓) = exp(�i✓P̂i, j/2), (64)

where ✓ is a real-valued parameter. The e-swap gate, which
is equivalent to the swap↵ gate up to a two-qubit global phase
factor [41, 80–82], is depicted schematically in Fig. 1(c) as
a blue rectangular extended over two qubits. The gate corre-
sponding to Eq. (64) can be implemented with three CNOT
gates and few single-qubit rotations [83–85]. The time-
evolution operators of ĤA and ĤB are given respectively by

exp(�iĤAt) =
N/2Y

i=1

Û2i,2i+1(tJ) (65)

and

exp(�iĤBt) =
N/2Y

i=1

Û2i�1,2i(tJ). (66)

Since [Û2i,2i+1, Û2 j,2 j+1] = 0 and [Û2i�1,2i, Û2 j�1,2 j] = 0 for
i , j, the order of the product is not relevant in Eqs. (65)
and (66). As described in the following, Fig. 1(c) illustrates a
typical circuit structure that approximates the time-evolution
operator Û(�⌧), consisting of a product of exp(�iĤA�⌧si)’s
and exp(�iĤB�⌧si)’s with real parameters {si}. The lowest-
order symmetric Suzuki-Trotter decomposition of Û(�⌧) for
the bipartitioned Hamiltonian Ĥ = ĤA + ĤB is given by

Ŝ 2(�⌧) = e�i �⌧2 ĤA e�i�⌧ĤB e�i �⌧2 ĤA . (67)

B. Degree of approximation

We first examine quantitatively how the Hamiltonian power
Ĥn is approximated by Ĥn

ST(r)(�⌧). For this purpose, we de-
fine a distance d(Â, B̂) between operators Â and B̂ as

d(Â, B̂) =

vuut
1 �

����
D
Â, B̂
E

F

����
���
���Â
���
���
F

���
���B̂
���
���
F

, (68)

where
D
Â, B̂
E

F
denotes the Frobenius inner product between Â

and B̂ defined by
D
Â, B̂
E

F
= Tr
h
Â†B̂
i

(69)

and ||Â||F denotes the Frobenius norm of Â, i.e.,
���
���Â
���
���
F =

q
Tr
h
Â†Â
i
. (70)

Note that hÂ, ÂiF = ||Â||2F, 0 6 |hÂ, B̂iF| 6 ||Â||F||B̂||F, 0 6
d(Â, B̂) 6 1, d(Â, B̂) = d(aÂ, bB̂) with a and b being nonzero
complex numbers, and d(Â, B̂) = 0 if and only if Â = B̂. We
compute the distance d(Â, B̂) for Â = Ĥn and B̂ = Ĥn

ST(r)(�⌧)
given in Eq. (4) for r = 0 and Eq. (12) for r > 1. The Hamil-
tonian Ĥ is for the spin-1/2 Heisenberg model on an N-qubit
ring given in Eq. (58).

Evaluating the distance is costly as it demands matrix-
matrix multiplications or diagonalizations. To avoid such
costly operations, we employ a stochastic evaluation of the
trace as [86–90]

Tr
h
X̂
i
= lim

R!1

1
R

RX

⇣=1

h�⇣ |X̂|�⇣i, (71)

where X̂ 2
n
Â†Â, B̂†B̂, Â†B̂

o
and

|�⇣i =
X

x

ei�⇣ (x)|xi (72)

is a random-phase state with {|xi} being a complete orthonor-
mal basis set such that hx|x0i = �xx0 and �⇣(x) being a random
variable drawn uniformly from [0, 2⇡). Note that h�⇣ |�⇣i =
2N , i.e., the dimension ND of the Hilbert space. We choose
{|xi} as the orthonormal basis set that diagonalizes the lo-
cal Pauli Z operators. The stochastic evaluation of the trace
in Eq. (71) requires only sparse matrix-vector multiplications
and a single inner-product calculation for each ⇣, if X̂ is rep-
resented as a product of sparse matrices, which is indeed the
case here. Instead of taking the limit R ! 1, we fix R = 16
for N > 12 and R = 256 for N = 10 and estimate error bars.
Since h�⇣ |Â†Â|�⇣i, h�⇣ |B̂†B̂|�⇣i, and h�⇣ |Â†B̂|�⇣i for Â = Ĥn

and B̂ = Ĥn
ST(r)(�⌧) are highly correlated to each other, er-

ror bars of d(Â, B̂) must be estimated using the corresponding
3 ⇥ 3 covariance matrix.

Figure 3 shows the distance as a function of �⌧ for n = 1, 2,
and 3 with N = 10, 12, 14, 16, 18, 20, 22 and 24 using the
symmetric Suzuki-Trotter decompositions Ŝ 2 and Ŝ (3)

4 . Fig-
ures 3(a)–3(c) show the results without the Richardson ex-
trapolation (r = 0). Since the leading systematic error in

H1 H2

Time-discretization error is well controlled
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Error is well controlled even for quite large power (n=100)
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FIG. 4. (a) The distance d
⇣
Ĥn, Ĥn

ST(r)(�⌧)
⌘

between the exact
Hamiltonian power Ĥn and the approximated Hamiltonian power
Ĥn

ST(r)(�⌧) given in Eq. (4) without the Richardson extrapolation
(r = 0) as a function of n for di↵erent values of �⌧. (b) Same as
(a) but as a function of �2

⌧ for di↵erent values of the power n. (c)
Same as (a) but with the first-order Richardson extrapolation (r = 1)
given in Eq. (12). (d) Same as (c) but as a function of �4

⌧ for di↵er-
ent values of the power n. The inset in (d) shows the enlarged plot
for �⌧J 6 0.04. The Hamiltonian Ĥ is for the spin-1/2 Heisenberg
model on an N = 24 qubit ring given in Eq. (58). The lowest-order
symmetric Suzuki-Trotter decomposition Ŝ 2 is used. The error bar
indicates standard error of the mean. The solid lines are guide for the
eye. Note that each panel employs a di↵erent y-axis scale.

Considering the Krylov-subspace diagonalization as an ap-
plication of the quantum power method on near-term quan-
tum computers, it is crucial to reduce the circuit depth. As
discussed in Sec. II B and Sec. IV C, the depth of the cir-
cuit required for constructing the block Krylov subspace
Kn
⇣
ĤST(r)(�⌧), {|qki}MB

k=1

⌘
scales as O(n) with a prefactor D(p)

2m.
Since m and p in the symmetric Suzuki-Trotter decomposi-
tion Ŝ (p)

2m can be set to the minimum values m = 1 and p = 3,
at least for the system sizes examined in the previous sec-
tion including N = 16, the primary objective here is to re-
duce the power n. For this purpose, we first describe the se-
lection of the reference states, aiming that the block Krylov
subspaceKn

⇣
ĤST(r)(�⌧), {|qki}MB

k=1

⌘
spanned by these reference

states can approximate reasonably well the target subspace,
which in the present case is the eigenspace of the ground state
of Ĥ . Then we show by numerical simulations how the se-

lection of the reference states a↵ects the convergence to the
ground state with n.

1. Selection of reference states

Equation (35) suggests that the ground state | 0i can be
well approximated if the reference states {|qki}MB

k=1 are cho-
sen so that these states have substantial overlap with the exact
ground state. Therefore, as the reference states, we introduce
the following product states for the subspace diagonalization:

|q1i = |�Ai = ⌦N/2
i=1 |s2i,2i+1i, (73)

|q2i = |�Bi = ⌦N/2
i=1 |s2i�1,2ii, (74)

|q3i = |XAFM1i = ⌦N/2
i=1 |+i2i�1|�i2i, (75)

|q4i = |XAFM2i = ⌦N/2
i=1 |+i2i|�i2i+1, (76)

|q5i = |YAFM1i = ⌦N/2
i=1 |Ri2i�1|Li2i, (77)

|q6i = |YAFM2i = ⌦N/2
i=1 |Ri2i|Li2i+1, (78)

|q7i = |ZAFM1i = ⌦N/2
i=1 |0i2i�1|1i2i, (79)

|q8i = |ZAFM2i = ⌦N/2
i=1 |0i2i|1i2i+1, (80)

where |si, ji = 1p
2
(|0ii|1i j � |1ii|0i j) is the spin-singlet state

which is an eigenstate of the swap operator P̂i j with eigen-
value �1 and is also known as one of the Bell states, |+ii =

1p
2
(|0ii + |1ii) and |�ii = 1p

2
(|0ii � |1ii) are the eigenstates

of X̂i with eigenvalues ±1, |Rii = 1p
2
(|0ii + i|1ii) and |Lii =

1p
2
(|0ii � i|1ii) are the eigenstates of Ŷi with eigenvalues ±1,

and |0ii and |1ii are the eigenstates of Ẑi with eigenvalues ±1.
|�Ai and |�Bi are the ground states of ĤA and ĤB, respec-
tively, while others are the Néel states that are the ground
states when a mean-field theory is applied to the Hamiltonian.
These product states are expected to have a sizable overlap
with the exact ground state (also see Fig. 6) and, moreover,
are easy to be prepared from |0i⌦N with appropriate combina-
tions of Pauli, Hadamard, phase, and CNOT gates.

Another relevant candidate might be a variational state that
has a substantial overlap with the ground state. We thus intro-
duce

|q9i = | VQEi (81)

as another reference state, where | VQEi is an approximate
ground state prepared with a VQE scheme. Specifically,
we choose | VQEi as a resonating-valence-bond-type wave
function without the symmetry projection operator, contain-
ing 64 optimized variational parameters for N = 16 that do
not reflect the spatial symmetry of the Hamiltonian, as re-
ported in Ref. [91]. While the exact ground-state energy is
E0/NJ = �0.196393522, our variational state | VQEi has the
variational energy h VQE|Ĥ | VQEi/NJ = �0.1885 (also see
Fig. 5) and the ground-state fidelity |h 0| VQEi|2 = 0.771
(also see Fig. 6).

In our previous study [91], we have shown that restora-
tion of the spatial symmetry that is broken by a circuit ansatz

N=24 fixed
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Ĥ

n ,Ĥ
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FIG. 4. (a) The distance d
⇣
Ĥn, Ĥn

ST(r)(�⌧)
⌘

between the exact
Hamiltonian power Ĥn and the approximated Hamiltonian power
Ĥn

ST(r)(�⌧) given in Eq. (36) without the Richardson extrapolation
(r = 0) as a function of n for di↵erent values of �⌧. (b) Same as
(a) but as a function of �2

⌧ for di↵erent values of the power n. (c)
Same as (a) but with the first-order Richardson extrapolation (r = 1)
given in Eq. (41). (d) Same as (c) but as a function of �4

⌧ for di↵er-
ent values of the power n. The inset in (d) shows the enlarged plot
for �⌧J 6 0.04. The Hamiltonian Ĥ is for the spin-1/2 Heisenberg
model on an N = 24 qubit ring given in Eq. (1). The lowest-order
symmetric Suzuki-Trotter decomposition Ŝ 2 is used. The error bar
indicates standard error of the mean. The solid lines are guide for the
eye.

1. Selection of reference states

Equation (47) suggests that the ground state | 0i can be
well approximated if the reference states {|qki}MB

k=1 are cho-
sen so that these states have substantial overlap with the exact
ground state. Therefore, as the reference states, we introduce

the following product states for the subspace diagonalization:

|q1i = |�Ai = ⌦N/2
i=1 |s2i,2i+1i, (69)

|q2i = |�Bi = ⌦N/2
i=1 |s2i�1,2ii, (70)

|q3i = |XAFM1i = ⌦N/2
i=1 |+i2i�1|�i2i, (71)

|q4i = |XAFM2i = ⌦N/2
i=1 |+i2i|�i2i+1, (72)

|q5i = |YAFM1i = ⌦N/2
i=1 |Ri2i�1|Li2i, (73)

|q6i = |YAFM2i = ⌦N/2
i=1 |Ri2i|Li2i+1, (74)

|q7i = |ZAFM1i = ⌦N/2
i=1 |0i2i�1|1i2i, (75)

|q8i = |ZAFM2i = ⌦N/2
i=1 |0i2i|1i2i+1, (76)

where |si, ji = 1p
2
(|0ii|1i j � |1ii|0i j) is the spin-singlet state

which is an eigenstate of the swap operator P̂i j with eigen-
value �1 and is also known as one of the Bell states, |+ii =

1p
2
(|0ii + |1ii) and |�ii = 1p

2
(|0ii � |1ii) are the eigenstates

of X̂i with eigenvalues ±1, |Rii = 1p
2
(|0ii + i|1ii) and |Lii =

1p
2
(|0ii � i|1ii) are the eigenstates of Ŷi with eigenvalues ±1,

and |0ii and |1ii are the eigenstates of Ẑi with eigenvalues ±1.
|�Ai and |�Bi are the ground states of ĤA and ĤB, respec-
tively, while others are the Néel states that are the ground
states when a mean-field theory is applied to the Hamiltonian.
These product states are expected to have a sizable overlap
with the exact ground state (also see Fig. 6) and, moreover,
are easy to be prepared from |0i⌦N with appropriate combina-
tions of Pauli, Hadamard, phase, and CNOT gates.

Another relevant candidate might be a variational state that
has a substantial overlap with the ground state. We thus intro-
duce

|q9i = | VQEi (77)

as another reference state, where | VQEi is an approximate
ground state prepared with a VQE scheme. Specifically,
we choose | VQEi as a resonating-valence-bond-type wave
function without the symmetry projection operator, contain-
ing 64 optimized variational parameters for N = 16 that do
not reflect the spatial symmetry of the Hamiltonian, as re-
ported in Ref. [87]. While the exact ground-state energy is
E0/NJ = �0.196393522, our variational state | VQEi has the
variational energy h VQE|Ĥ | VQEi/NJ = �0.1885 (also see
Fig. 5) and the ground-state fidelity |h 0| VQEi|2 = 0.771
(also see Fig. 6).

In our previous study [87], we have shown that restora-
tion of the spatial symmetry that is broken by a circuit ansatz
greatly improves the ground-state-energy estimation as well
as the ground-state fidelity. Motivated by this finding, we in-
troduce another set of the reference states {|q̄ki}Nk=1 with

|q̄ki = T̂k�1| VQEi, (78)

where T̂k is a unitary operator representing the one-
dimensional k-lattice-space translation with T̂0 = Î, and
| VQEi is the same state given in Eq. (77). With this set of
the reference states, the translational symmetry that is broken

r=0 r=1
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Suzuki-Trotter decomposition of the time-evolution operator,
we divide the Hamiltonian into two parts as

Ĥ = ĤA + ĤB, (61)

with

ĤA =
J
2

N/2X

i=1

P̂2i,2i+1 (62)

and

ĤB =
J
2

N/2X

i=1

P̂2i�1,2i. (63)

Notice that [P̂2i,2i+1, P̂2 j,2 j+1] = [P̂2i�1,2i, P̂2 j�1,2 j] = 0, where
[Â, B̂] = ÂB̂ � B̂Â is the commutator of two operators Â and
B̂.

For the one-dimensional spin-1/2 Heisenberg model Ĥ =
ĤA + ĤB given in Eqs. (58) and (61), the time-evolution op-
erator Û(t) = e�iĤ t is constituted by two elementary time-
evolution operators associated with ĤA and ĤB. Let us first
introduce the exponential-swap (e-swap) gate Ûi, j [75–79]

Ûi, j(✓) = exp(�i✓P̂i, j/2), (64)

where ✓ is a real-valued parameter. The e-swap gate, which
is equivalent to the swap↵ gate up to a two-qubit global phase
factor [41, 80–82], is depicted schematically in Fig. 1(c) as
a blue rectangular extended over two qubits. The gate corre-
sponding to Eq. (64) can be implemented with three CNOT
gates and few single-qubit rotations [83–85]. The time-
evolution operators of ĤA and ĤB are given respectively by

exp(�iĤAt) =
N/2Y

i=1

Û2i,2i+1(tJ) (65)

and

exp(�iĤBt) =
N/2Y

i=1

Û2i�1,2i(tJ). (66)

Since [Û2i,2i+1, Û2 j,2 j+1] = 0 and [Û2i�1,2i, Û2 j�1,2 j] = 0 for
i , j, the order of the product is not relevant in Eqs. (65)
and (66). As described in the following, Fig. 1(c) illustrates a
typical circuit structure that approximates the time-evolution
operator Û(�⌧), consisting of a product of exp(�iĤA�⌧si)’s
and exp(�iĤB�⌧si)’s with real parameters {si}. The lowest-
order symmetric Suzuki-Trotter decomposition of Û(�⌧) for
the bipartitioned Hamiltonian Ĥ = ĤA + ĤB is given by

Ŝ 2(�⌧) = e�i �⌧2 ĤA e�i�⌧ĤB e�i �⌧2 ĤA . (67)

B. Degree of approximation

We first examine quantitatively how the Hamiltonian power
Ĥn is approximated by Ĥn

ST(r)(�⌧). For this purpose, we de-
fine a distance d(Â, B̂) between operators Â and B̂ as

d(Â, B̂) =

vuut
1 �

����
D
Â, B̂
E

F

����
���
���Â
���
���
F

���
���B̂
���
���
F

, (68)

where
D
Â, B̂
E

F
denotes the Frobenius inner product between Â

and B̂ defined by
D
Â, B̂
E

F
= Tr
h
Â†B̂
i

(69)

and ||Â||F denotes the Frobenius norm of Â, i.e.,
���
���Â
���
���
F =

q
Tr
h
Â†Â
i
. (70)

Note that hÂ, ÂiF = ||Â||2F, 0 6 |hÂ, B̂iF| 6 ||Â||F||B̂||F, 0 6
d(Â, B̂) 6 1, d(Â, B̂) = d(aÂ, bB̂) with a and b being nonzero
complex numbers, and d(Â, B̂) = 0 if and only if Â = B̂. We
compute the distance d(Â, B̂) for Â = Ĥn and B̂ = Ĥn

ST(r)(�⌧)
given in Eq. (4) for r = 0 and Eq. (12) for r > 1. The Hamil-
tonian Ĥ is for the spin-1/2 Heisenberg model on an N-qubit
ring given in Eq. (58).

Evaluating the distance is costly as it demands matrix-
matrix multiplications or diagonalizations. To avoid such
costly operations, we employ a stochastic evaluation of the
trace as [86–90]

Tr
h
X̂
i
= lim

R!1

1
R

RX

⇣=1

h�⇣ |X̂|�⇣i, (71)

where X̂ 2
n
Â†Â, B̂†B̂, Â†B̂

o
and

|�⇣i =
X

x

ei�⇣ (x)|xi (72)

is a random-phase state with {|xi} being a complete orthonor-
mal basis set such that hx|x0i = �xx0 and �⇣(x) being a random
variable drawn uniformly from [0, 2⇡). Note that h�⇣ |�⇣i =
2N , i.e., the dimension ND of the Hilbert space. We choose
{|xi} as the orthonormal basis set that diagonalizes the lo-
cal Pauli Z operators. The stochastic evaluation of the trace
in Eq. (71) requires only sparse matrix-vector multiplications
and a single inner-product calculation for each ⇣, if X̂ is rep-
resented as a product of sparse matrices, which is indeed the
case here. Instead of taking the limit R ! 1, we fix R = 16
for N > 12 and R = 256 for N = 10 and estimate error bars.
Since h�⇣ |Â†Â|�⇣i, h�⇣ |B̂†B̂|�⇣i, and h�⇣ |Â†B̂|�⇣i for Â = Ĥn

and B̂ = Ĥn
ST(r)(�⌧) are highly correlated to each other, er-

ror bars of d(Â, B̂) must be estimated using the corresponding
3 ⇥ 3 covariance matrix.

Figure 3 shows the distance as a function of �⌧ for n = 1, 2,
and 3 with N = 10, 12, 14, 16, 18, 20, 22 and 24 using the
symmetric Suzuki-Trotter decompositions Ŝ 2 and Ŝ (3)

4 . Fig-
ures 3(a)–3(c) show the results without the Richardson ex-
trapolation (r = 0). Since the leading systematic error in

operator distance

H: 1D S=1/2 Heisenberg model



Application: Krylov-subspace diagonalization

Un = span (|u1i, |u2i, · · · , |uni)

<latexit sha1_base64="QUEPvWMVZsyF2nTdghJHeFEueD8="></latexit>

Approximate the ground state of H within a subspace

Hv = Sv✏
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[S]i j = hui|u ji

<latexit sha1_base64="pmph0LZ1lfc/UImf5lB6WLOYOOw="></latexit>

| 0i ⇡
nX

i=1

vi|uii
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where vi can be obtained by solving the generalized eigenvalue equation

A relevant choice of the subspace: Krylov subspace

Un = Kn(Ĥ, | i) = span
⇣
| i, Ĥ| i, · · · , Ĥn�1| i

⌘
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Choose Un as a Krylov subspace

Then we have 

Hv = Sv✏
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Rayleigh-Ritz technique

quantum-power method

reference state(s)



1D S=1/2 Heisenberg model (L=16 and ΔτJ=0.05 with Richardson extrapolation)  

Energy converges exponentially in n 
Use of multiple initial (reference) states helps the better convergence
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Application: Krylov-subspace diagonalization
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in the apparent circuit structure of | VQEi can be restored as a
linear combination of the states in the block Krylov subspace,
without applying a projection operator to | VQEi. For exam-
ple, a simple sum of these N reference states {|q̄ki}Nk=1, i.e.,PN

k=1 |q̄ki, is translationally symmetric with momentum zero.
The reference states |�Ai, |�Bi, | VQEi, and {|qki}Nk=1 in-

troduced above are all spin-singlet states, i.e, the total spin
and the Z-component of the total spin being zero, while the
X-, Y-, and Z-components of the total spin are zero for the
reference states |XAFM1(2)i, |YAFM1(2)i, and |ZAFM1(2)i, respec-
tively. Because the Hamiltonian Ĥ considered here is spin
SU(2) symmetric and the quantum power method preserves
the Hamiltonian symmetry as shown in Eq. (42), the Krylov
subspace generated from these reference states remains in the
same symmetry sector of the Hilbert space as the reference
states. We select these reference states because it is known
that the ground state of the spin-1/2 Heisenberg model con-
sidered here is spin singlet [88].

2. Ground-state energy and fidelity

Figures 5 and 6 show the estimated ground-state energy
EKS and the ground-state fidelity F = |h 0| KSi|2, obtained
by solving Eq. (54), as a function of n = dimKn/MB, i.e.,
the dimension of the Krylov subspace Kn per block size MB.
Note that Ĥn�1

ST(r)(�⌧) is the maximum approximated Hamilto-
nian power multiplied to the reference states when the Krylov
subspace Kn

⇣
ĤST(r)(�⌧), {|qki}MB

k=1

⌘
is constructed in Eq. (44).

Here, the Krylov-subspace Hamiltonian matrix [H̃]i j and the
overlap matrix [S̃]i j are computed as hũi|Ĥ |ũ ji and hũi|ũ ji, re-
spectively. The first-order Richardson extrapolation (r = 1)
and the lowest-order symmetric Suzuki-Trotter decomposi-
tion Ŝ 2 are used for {Ĥ l

ST(r)(�⌧)}n�1
l=1 with �⌧J = 0.05, in which

the systematic errors are practically negligible for our purpose
(see Figs. 3 and 4).

Let us first focus on the results for n = 1, where no Hamil-
tonian power is incorporated in the Krylov subspace. It is
not surprising to find that the energy and the fidelity are sub-
stantially improved if the reference states include the VQE
state | VQEi. The improvement is even more significant if
we incorporate the spatially translated VQE states {|q̄ki}Nk=1.
Note that, if MB = 1, the energies indicated at n = 1 are
merely the expectation values of Ĥ with respect to the corre-
sponding reference state, e.g., h�A|Ĥ |�Ai/NJ = �0.125 and
h VQE|Ĥ | VQEi/NJ = �0.1885. The multireference scheme
with MB > 1 further decreases the energy and improves the
fidelity without applying the Hamiltonian power to the refer-
ence states.

With increasing the power n, the energy decreases mono-
tonically and the fidelity keeps increasing towards one, imply-
ing that the ground state estimation can be improved system-
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FIG. 5. (a) The ground-state energy EKS for N = 16 as a func-
tion of the dimension of the Krylov subspace Kn per block size MB,
n = dimKn/MB, with various set of the reference states. The hor-
izontal line indicates the exact ground-state energy E0. The results
are obtained with �⌧J = 0.05, r = 1, m = 1, and p = 3. (b) Same as
(a) but a semilog plot of the energy di↵erence EKS � E0 as a function
of n.

atically over a chosen set of reference states without any pa-
rameter optimization. The nearly linear behavior of EKS � E0
in the semilog plot shown in Fig. 5(b) suggests the exponen-
tial convergence to the exact ground-state energy as a function
of n, as in the Lanczos method [10]. Notice also that the en-
ergy as well as the fidelity for MB = 16 is consistently better
than those for MB 6 9 for every n. Moreover, the slope in
the semilog plot of EKS � E0 and also the slop of the fidelity
tend to be steeper for MB > 1 than for MB = 1, implying that
the convergence towards the ground state is improved more
e�ciently in the multireference scheme with MB > 1. Inter-
estingly, even if | VQEi is not included in a set of reference
states, the multireference schemes with MB = 2 and MB = 8
surpass the scheme including only | VQEi with MB = 1 at
n = 5 and 3, respectively, in terms of the ground-sate en-
ergy EKS. Therefore, the multireference scheme with MB > 1
works e↵ectively for reducing the power n and hence the num-
ber of gates in a circuit, even if simple product states with no
variational parameters are chosen for the reference states. Ta-
ble I summarizes the minimum dimension n per block size
of the Krylov subspace and the corresponding circuit depth
required for converging the ground-state energy EKS with an
accuracy (EKS � E0)/NJ 6 10�4 for N = 16. Note here that
the commuting exponentials in [Ŝ 2(±�⌧/2)]n�1 are contracted
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spectively. The first-order Richardson extrapolation (r = 1)
and the lowest-order symmetric Suzuki-Trotter decomposi-
tion Ŝ 2 are used for {Ĥ l
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atically over a chosen set of reference states without any pa-
rameter optimization. The nearly linear behavior of EKS � E0
in the semilog plot shown in Fig. 5(b) suggests the exponen-
tial convergence to the exact ground-state energy as a function
of n, as in the Lanczos method [10]. Notice also that the en-
ergy as well as the fidelity for MB = 16 is consistently better
than those for MB 6 9 for every n. Moreover, the slope in
the semilog plot of EKS � E0 and also the slop of the fidelity
tend to be steeper for MB > 1 than for MB = 1, implying that
the convergence towards the ground state is improved more
e�ciently in the multireference scheme with MB > 1. Inter-
estingly, even if | VQEi is not included in a set of reference
states, the multireference schemes with MB = 2 and MB = 8
surpass the scheme including only | VQEi with MB = 1 at
n = 5 and 3, respectively, in terms of the ground-sate en-
ergy EKS. Therefore, the multireference scheme with MB > 1
works e↵ectively for reducing the power n and hence the num-
ber of gates in a circuit, even if simple product states with no
variational parameters are chosen for the reference states. Ta-
ble I summarizes the minimum dimension n per block size
of the Krylov subspace and the corresponding circuit depth
required for converging the ground-state energy EKS with an
accuracy (EKS � E0)/NJ 6 10�4 for N = 16. Note here that
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Energy
Energy from the exact energy 

 (semi-log plot)

Un = Kn(Ĥ, | i) = span
⇣
| i, Ĥ| i, · · · , Ĥn�1| i

⌘
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Krylov subspace: 

reference state(s)



Quantum-classical hybrid scheme is a promising approach for simulating 
quantum many-body systems in NISQ devices 

We want to go beyond a quantum variational approach 
parameter optimization in a classical computer 
no knowledge of a quantum circuit structure 

Symmetry-adapted VQE scheme 
non-unitarity treated as post-processing in a classical computer 
shallow circuit with less number of gates 

Circuit construction based on discretized quantum adiabatic process 
no prior knowledge required for a better circuit 
requires variational parameter optimization 

Quantum power method 
no variational parameters & no prior knowledge for a better circuit

Summary


