RHICf I detector and Cosmic-ray physics

Hiroaki MENJO Nagoya University

for RHICf collaboration

- Cosmic-ray physics
- RHICf I setup and detector
- Run 17 operation
- Physics results (of LHCf)
- Expectation of RHICf II

Japan-Korea collaboration meeting, 15-16 July 2021

Zero-degree of collisions

Cosmic-rays

UHECR observations

UHECR observation issues

Very forward energy spectrum

- If softer, shallow development
- If harder, deep penetrating

Elasticity $k = \frac{E_{lead}}{E_{avail}}$

- If small k (π⁰s carry more energy): rapid development
- If large k (baryons carry more energy): deep penetrating

The coverage of the "wide" rapidity range by experiments is crucial

Especially High Energy Flux in "**forward**" region

Cross section

If large σ_{ine} : rapid development If small σ_{ine} : deep penetrating

Forward angular emission Secondary particle multiplicity

(n, p, π)

Air shower developments and hadronic interaction

They must be measured experimentally We do them at LHC and RHIC

These energetic π^0 and n are always emitted into the very forward region.

The LHCf Collaboration

Y. Itow, Y. Matsubara, H. Menjo, Y. Muraki,
K. Sato, K. Ohashi, M. Ueno (Nagoya Univ.)
T. Sako (Univ. Tokyo) K. Yoshida (Shibaura Tech.) N. Sakurai (Tokushima Univ.)
K. Kasahara, S. Torii (Waseda Univ.) K. Shimizu, T. Tamura (Kanagawa univ.)
M. Haguenauer (PolyTech) W.C. Turner (Bereley)
O. Adriani, E. Berti, L. Bonechi, M. Bongi, G. Castellini,
R.D'Alessandro, P. Papini, S. Ricciarini, A. Tiberio (INFN Florence)

The RHICf Collaboration

Y. Itow, H. Menjo, K. Sato, M. Ueno (Nagoya Univ.)
T. Sako (Univ. Tokyo) N. Sakurai (Tokushima Univ.)
K. Kasahara, S. Torii (Waseda Univ.)
Y. Goto, I. Nakagawa, R. Seidl (RIKEN) K. Tanida (JAEA)
J. S. Park (Seoul univ.) B. Hong, M. H. Kim (Korea univ.)
O. Adriani, E. Berti, L. Bonechi, R.D'Alessandro (INFN Florence)
A. Trocomi (INFN Catania)

LHCf and RHICf experiments

LHCf experiment

- Zero degree measurement at CERN-LHC
- Two calorimeter detectors (Arm1, Arm2) at ± 140 m from ATLAS IP
- Operations

pp: √s = 0.9 TeV (2010), √s = 2.76 TeV (2013), √s = 7 TeV (2010), √s = 13 TeV (2015)
pPb: √snn = 5 TeV (2013,2016) √snn = 5 TeV (2016)

RHICf experiment

- Zero degree measurement at BNL-RHIC
- Only one detector at 18 m from STAR IP
- Spin asymmetry measurements with polarized proton beams
- Operation: pp $\sqrt{s} = 510$ GeV (2017)

IP

RHICf experiment

RHIC at BNL

• p+p \sqrt{s} = 510 GeV

(polarized beam)

- Test of energy scaling with the wide p_T range.
- The operation was successfully completed in June 2017
- RHICf covers $\eta > 5.9$
- Common operation with STAR

The RHICf detectors

Sampling and Positioning Calorim

- W (44 r.l $\,$, $\,1.7\lambda_{\rm I}$) and 16 GSO scintillator layers
- Four positioning sensitive layers; Arm1: XY-hodoscope of GSO bars (1mm step) Arm2: XY-Silicon strip (160 µm step)
- Each detector has two calorimeter towers, which allow to reconstruct π^0

lime (EDI)

Event sample

Calorimeter performances

RHICf operation

- Successfully completed in June 2021
 - \Box p+p, \sqrt{s} =510GeV, radial polarization.
 - □ 3 days operation with low luminosity (L=10³¹cm⁻²s⁻¹)
 - Joint operation with STAR
 - G 3 detector positions

Hit map

of neutrons (>150GeV)

RHICf Trigger

- 3 trigger modes
 - \Box Shower trigger (γ ,n) 6-30 kHz
 - \Box High EM trigger ($\gamma > 100 \text{ GeV}$) ~ 1 kHz
 - \Box π^0 trigger (π^0) ~ 200 Hz

\Rightarrow 1 kHz readout, 100 M events in Run17

π⁰ measurement

- Not only physics but also for calibration and performance studies.
- Reconstruct π^0 kinematics, energy, Pt, Mass, from a photon pair from a π^0 decay
- Two event types

Physics results from RHICf (LHCf)

Physics in RHICf

Cross-section measurement

Spin asymmetry measurement

 \rightarrow Goto-san's talk

Forward photon yield

Operations and Results

Run	Elab (eV)	Photon	Neutron	π ⁰	
p-p √s=0.9TeV (2009/2010)	4.3x10 ¹⁴	PLB 715, 298 (2012)		_	
p-p √s=2.76TeV (2013)	4.1x10 ¹⁵			PRC 86, 065209 (2014)	PRD 94
p-p √s=7TeV (2010)	2.6x10 ¹⁶	PLB 703, 128 (2011)	PLB 750 360 (2015)	PRD 86, 092001 (2012)	(2016)
p-p √s=13TeV (2015)	9.0x10 ¹⁶	PLB 780, 233 (2018)	JHEP 2018, 73 (2018) JHEP 2020, 016 (2020)	preliminary	
p-Pb √s _{NN} =5TeV (2013,2016)	1.4x10 ¹⁶			PRC 86, 065209 (2014)	
р-Рb √sмn=8TeV (2016)	3.6x10 ¹⁶	Preliminary			
RHICf p-p √s=510GeV (2017)	1.4x10 ¹⁴	On-going		Spin Asymmetry PRL 124 252501 (2021)	

Neutron, p-p $\sqrt{s=13TeV}$

Neutron, p-p √s=13TeV

Physics of RHICf II

Motivations

- Increase statistics of high-X_F π^0
- Measurement of strange hadrons at 0 degree
 $K^{0}_{s} \rightarrow 2\pi^{0} \rightarrow 4\gamma$ (B.R. 30.7%)
 - $\Box \quad \Lambda \rightarrow n + \pi^0 \rightarrow n + 2\gamma \text{ (B.R. 35.9\%)}$

p + A collisions

- a A-dependence of A
 - Strong A-dependence of Neutron by PHENIX (Pays. Rev. Lett 120, 022001 (2018))
 - A-dependence of very forward π^0
- p + light ion collisions for Cosmic-rays
 - Ideal condition for CR-Air interaction studies

Kaons in air showers

- If higher Kaon production in high energy
 - \rightarrow increase the muon number on the ground.
 - A high energy π^0 decays immediately \rightarrow EM component,
 - A high energy K⁰ collides air before its decay \rightarrow Hadronic component
- \Box Large K/ π ratio in QGP
- Impact on atmospheric v flux (next page)

Atm. neutrinos from Kaon decays

- Hot topics: Astro-neutrino detection by IceCube
- large uncertainty on background estimation of Atm. v
- Kaons are dominant source of v_{μ} in $E_v \ll 10^{15} eV$

Joint analyses with STAR

Various physics cases with STAR detectors

Diffractive collisions measurement

- Pure diffractive sample obtained with a selection of N_{ch}=0 in the central region.
- Probing Multi-parton interactions (MIPs)
 - Correlation analysis between forward spectra (remnant) and N_{ch} in the central region (#MPIs)
 p
- p-π collision measurement via one-pion-exchange process

Summary

- RHICf measurement is very important for cosmic-ray physics too.
 - Energy scaling of forward particle production by comparing with LHCf data.
- RHICf I operation was completed in June 2017
 - Analyses are on-going
 - Extend physics by joint analyses with STAR
- Future RHICf II operation can address the forward particle productions of strange hadrons, K⁰_s and Λ.

Backup

Photon Energy Flow

Energy Flow Calculation:

LHCT

$$\frac{dE}{d\eta} = C_{thr} \frac{1}{\Delta \eta} \sum_{E_j > 200 GeV} E_j F(E_j)$$

- F(Ej) : Measured differential cross-section
- $\Delta \eta$: The pseudo-rapidity range

Ref: Y. Makino CERN-THESIS-2017-049

EPOS-LHC, SIBYLL2.3 Good agreement QGSJET II-04 ~ 30% lower than data

π⁰ measurement

π⁰ pτ spectra at pp,7TeV

O. ADRIANI et al.

PHYSICAL REVIEW D 94, 032007 (2016)

Joint Analysis with ATLAS - Selection of Diffractive interactions -

π⁰ pz (~E) spectra at p+p,7TeV

PRD 94 (2016) 032007

DPMJET and **Pythia** overestimate over all E-p_T range

HC

Measurement of contributions of diffractive processes to forward photon spectra in pp collisions at $\sqrt{s} = 13$ TeV

Ratio (N_{ch=0}/Inclusive)

- At $\eta > 10.94$, the ratio of data increased from 0.15 to 0.4. with increasing of the photon energy up to 4TeV.
- PYTHIA8212DL predicts higher fraction at higher energies.
- SIBYLL2.3 show small fraction compare with data at η >10.94.
- At 8.81 < η < 8.99, the ratio of data keep almost constant as 0.17.
- EPOS-LHC and PYTHIA8212DL show good agreement with data at 8.81 < η < 8.99.

Update plan of the joint analysis

HC