EIC far-forward physics (... from a HEP physicist's view)

6th Korea-Japan PHENIX/sPHENIX/RHICf/EIC Collaboration Meeting 15 July 2021 Yuji Yamazaki (Kobe University)

EIC forward detectors

Horizontal x (cm)

- Roman pots
 - kinematical acceptance?
- ZDC
 - 4-6mrad acceptance
 - 50% / \sqrt{E} for hadrons
 - should measure 300 MeV γ
- B0
 - charged particle tracker
 - considering also to put EM calorimetry
- Today I concentrate on neutrals ZDC and B0

EIC Yellow Report physics using ZDC +B0 (1)

- Spectator tagging
 - for inelastic eA collisions: heavy ions, eD / $e^{3}He : n \times E_{beam}$ energy in ZDC
 - vetoing nuclear excitation events by tagging ~300 MeV photons from de-excitation

ALICE ZDC (A-side) with and without activities in plug area 2.76 TeV run

0.16 0.18

Itl(GeV²)

0.12 0.14

Proton/neutron tagged eD/eA DIS

- Proton-tagged *eD* and *eA* scattering
 - $e(p+n) \rightarrow en + p$ DIS for neutron!
 - Way to understand
 nuclear (EMC) effect
 or short-range correlation (SRC)
 by comparing small and large system
- Neutron-tagged (ep + n): proton structure with t
 - Cross-check with *ep* runs: *t* = 0 reference given!

Understanding EMC effect for HEP

- PDF fits show some mild tension between HERA and fixed-target data
- Example: HERAPDF 2.0 vs ABM11
 - HERAPDF 2.0: HERA data only
 - ABM11 (PRD 86, 054009): including
 - BCDMS, NMC, SLAC
 - Drell-Yan from FNAL
 - Dimuon from vN
- PDF at high-x will be one of the major systematics for high-mass BSM state search (M > 1 TeV) at the LHC

PDF comparison: HERA-only and with fixed target data

- This might simply be systematics of DIS experiments
 - Repeating the measurement with much better detector and environment at the EIC
- Or a real nuclear effect?
 - eD and e³He data should help

Consideration for 300MeV photons

- Any initial state radiation from heavy ion?
 - maybe serious for Au, Pb etc.
 This is irreducible
- Pile-up of stray particles in the ZDC area?
 - charged pions/kaons
 - fast neutrons of O(1GeV)
- Need charged particle veto (tracking) in front of ZDC
- May need timing to remove most of the background, especially neutrons
 - better to use fast crystals for EM ZDC

EIC Yellow Report physics using ZDC +B0 (2)

- Meson structure through "Sullivan process"
 - one-pion dominance in high x_F regime

HERA extraction of the pion structure function

- $x_{\pi} = x_{Bj}/(1 x_L)$ x_L : neutron momentum fraction
 - the shape of the SF for proton and pion are the same if $F_2 \propto x^{-\lambda}$ with constant λ
 - This holds quite well: see 2/3 F2 H1PDF2009, which is the proton structure function!
- The absolute value is smaller
 - ZEUS similar result (almost half of the theoretical prediction)
- High- x_{π} measurement at EIC should be interesting

$$F_2^{LN(3)}(x_L = 0.73)/\Gamma_{\pi}$$
, $\Gamma_{\pi} = 0.13$ H1

One step back: Question at HERA was more fundamental

- What is the production mechanism of forward baryons?
 - Baryon number should conserve: so there should exist either a proton or neutron, which should be there without **meson exchange**
 - Another view: **fragmentation**
 - For both models, factorization holds between photon vertex (x, Q^2) and baryon vertex (x_L, t)
 - How far can the baryons travel over rapidity?
 - non-forward neutron would also be interesting

Does the baryon talk to the virtual photon?

A bit more in detail: Q^2 dependence?

- slight dependence in Q^2
 - re-scattering (absorption)
 for photoproduction events?
 (photon = hadron)
- different dependence for x_L
 - low- x_L : stronger dependence
 - what is the mechanism?

NPB 637(2002) 3-56 (also right figure)

Photoproduction / DIS $Q^2 > 2 \text{ GeV}^2 \text{ vs } x_L$

• clear *x*_L dependence on the ratio Photoproduction / DIS

a bit more in detail: x-dependence?

- Leading neutron events have very high statistics (> 10% of DIS)
 - very detailed kinematic dependence can be studied
 - factorization or not?Pion structure effect?

Longitudinal spectrum of forward proton

Vertex factorization: summary

Factorisation holds approximately 0.25 (1/σ_{inc})dσ_{LN}/dx_L hint of mild absorption (20-30%) 0.2 0.15 - very little (x, Q^2) dependence on 0.1 leading baryon production probability 0.05 Fragmentation ZEUS (1/_{5 inc})dر_{LB}/dx_L 0.10 0.10 a (GeV⁻²) model: one-pion ZEUS 40 pb⁻¹ (+sub-leading) peak $ep \rightarrow eXn$ $Q^2 > 2 GeV^2$ $p_T^2 < 0.04 \text{ GeV}^2$ missing Systematic uncertainty no clear sign of 0.08 meson poles 0 0 (GeV⁻²) 10 (GeV-2) 0.06 in the proton spectra, however 0.04 ZEUS 3.4 pb⁻¹ 0 5 $extbf{ep}
ightarrow extbf{eXp}$ $3 < Q^2 < 254 \text{ GeV}^2$ 0.02 2.5 45 < W < 225 GeV $p_T^2 < 0.04 \text{ GeV}^2$ n 0.2 0.7 0.8 0.9 0.3 0.5 0.6 0.4

۲

p_T dependence for forward protons

- p_T dependence: again almost flat for proton
 - $-b \sim 7 \text{ GeV}^{-2} \ (\sigma \propto e^{-bp_T^2})$, constant
 - Slightly larger than proton size
 - Somewhat peripheral? Semi-soft, not directly probing proton

cf. quasi-elastic vector-meson production Strong Q^2 and M_{VM} dependence

Forward neutron: rich structure in b-slope

- Compared to various pion flux (e.g. πn vertex factor shape)
 - Qualitatively in agreement with various models
 - need to evaluate sub-leading components near $x_L = 1$ and low- x_L for more detailed discussion?

The forward baryon yield

- Naïve isovector exchange: neutrons are more than proton in the final state of hadron-hadron collisions
- This was not the case at HERA! More protons there for very forward range $p_T^2 < 0.04 \text{ GeV}^2$
- Where are these neutrons?
 - or are there more protons than expected?

Neutron puzzle (2): pp vs ep

- Limited fragmentation \Rightarrow the same spectra
- LHCf data similar to ep, but models suggest harder spectrum at $x_F \sim 1$
 - due to projectile fragmentation? $pp \rightarrow N^* + Y$, $N^* \rightarrow n + (hadrons)$
 - Corresponding to proton dissociation for *ep* DIS: $\gamma^* p \rightarrow XN^*$ LRG-tagged neutron? $\eta > 10.76$

LHCf p-p (s = 13 TeV QGSJET II-04

> EPOS-LHC DPMJET 3.06

PYTHIA 8.212

20

SIBYLL 2.3

4000

5000

6000

Energy [GeV]

 $8.81 < \eta < 8.99$

Events with a neutron at HERA and rapidity gap

- Fraction of LRG (Large Rapidity Gap) events: $2/3 \sim \frac{1}{2}$ of inclusive DIS
- Among LRG evnets
 - proton elastic/diffraction: no neutron
 - proton diffractive dissociation could yield neutrons through fragmentation or decay of excitation
 → could be fewer than inclusive DIS
 - fraction of LRG increses with x_F : possible sign of neutron production through diffractive process
 - However, this is not the main machanism to produce neutrons
- More diffraction in LHC *pp* collisions? (we usually think it is fewer)

Summary

- YR focuses much on spectator tagging and exclusive process for *ep* collisions
- I believe inclusive measurements are also interesting
 - applicability of the one-pion exchange
 - the neutron yield
 - absorption effect
- Neutron structure: real measurement, finally at the EIC!
 - Also very useful for HEP to disentangle isospin structure at high-x
- I did not discuss about the neutral pion production
 - one of the decay photon from π^0 's miss the ZDC for E < 30 GeV, unlike LHCf
 - B0 detector may do it well

BACKUP

Boundary condition for ZDC in EIC dipole

Big aperture 4mrad = 12cm Beam ~ 100 GeV

Size: $\pm 80 \text{ cm} \times 2\text{m}$ Big enough

Dose for *ep*

- for 300 fb⁻¹ ?

Dose for *eA*

– How much int. lumi?

Energy or position resolution?

1mm / 33m = 0.03mrad = 3 MeV @ 100 GeV: 0.03%

Hadrons: $50\%/\sqrt{E}$ @ 10 GeV = 17%, @100 GeV = 5% Photons: $4\%/\sqrt{E}$ @ 10 GeV = 1.3%, @100 MeV = 12%

Energy resolution is much more important Position resolution: 1cm is enough

For HadCal:

- 1. compensation by hardware or software
- 2. Small leakage of shower: need big calorimeter

For EMCal: need non-sampling calorimetry We should aim for $4\%/\sqrt{E}$

Aperture enough?

- eRHIC: 4mrad \times 100 GeV = 400 MeV
 - $|t| < 0.2 \text{ GeV}^2$: not much
 - OK for break-up neutrons
- JLEIC: 10mrad, 1 GeV
 - |t| < 1 GeV²: much better....
- HERA: 0.5mrad = 0.5 GeV
- LHeC: 0.35 mrad = 2.5 GeV

π^0 production by LHCf and ATLAS

- Impact to cosmic ray simulation
- π⁰ tagging thanks to excellent position resolution of the LHCf calorimeter (200 µm for 100 GeV e⁻)
- Diffractive events tagged by LRG in ATLAS

Need EM section with excellent position resolution

- Neutron yield is 20-30% fewer than naïve prediction of p : n = 1:2expected from isovector exchange
- Absorbtion? Rescattering?

- - Again no consistent with isovector exch.

Where did neutron disappear?