EIC Zero Degree Calorimeter

Shima Shimizu (RIKEN/JSPS)

15/July/2021 Korea-Japan meeting

EIC Zero Degree Calorimeter

- A calorimeter to tag photons and neutrons in the proton beam forward direction.
 - crab_pF Central Detector 1.0 Roman Pots **B2ApF** 40pF 03ApF 03BpF Q4ER detectors crab eR Forward agger 0.5 Spectrometer OBER BIApF 0.0 BlpF 22pf ZD **B2eR** Q2eR Q1eR (m) × -0.5 ab eF crab pR -1.0QOEF_5 ŝ Q1BpR Q1ApR QIEF Q2EF_5 DIEF_5 Q3EF_5 22p Q4EF_5 QSEF_5 Q6EF_5 -1.5Q3CpR Q3pR BZAPR -2.0-2.5 -40 -20 0 20 40 60 -60z (m)
- 37.5 m (33.5 m) away from the interaction point of IP6 (IP8).

IP6, but x direction is flipped upside down

Yellow Report Fig. 11.85 (arXiv:2103.05419)

Relevant Physics

The list is not completed... Please see YR (arXiv:2103.05419) for details (sec. 8.4, 8.5)

- Exclusive vector meson production in e+A
 - \rightarrow Sensitive to saturation
 - Separation of coherent vs incoherent processes
 - ²⁰⁸Pb de-excitation
- u-channel exclusive electroproduction of π^0 (e + p \rightarrow e' + p' + π^0)
 - → Nucleon-to-meson Transition Distribution Amplitudes
- Spectator neutron tagging in e+d DIS (e + d \rightarrow e' + X + n)
 - → Nuclear modifications of p and n structure, such as EMC effect.

e-/v/e+

 $v.Z^{0}.W^{\pm}$

K° K+ B°

 $\mathbf{p}', \mathbf{n}', \Lambda', \Sigma^+, \Sigma^+_{h}$

e-/e-

- Diffractive J/ Ψ in e+d scattering (arXiv: 2005.14706)
 - \rightarrow Short range correlation (SRC)
- Meson structure (Sullivan process)
 - e+p->(π) -> e'+X+n
 - A decay
- Cross section and asymmetry measurement of leading neutrons

Physics requirements

- Neutrons
 - Need to measure neutrons with E~E_p^{beam}
 - Energy resolution: acceptable **50%/VE + 5%**, ideally **35%/VE + 2%**
 - Angular resolution: 3mrad/VE (but < 300 μrad is not useful)
 300 μrad <-> 1 cm on ZDC <-> p_T~ 30 MeV for 100 GeV neutron
 - Large acceptance of 60cm x 60 cm.
- Photons
 - Detect soft photons: O(100) MeV
 - Also, Interested energy region: ~ 20-40 GeV
 - Energy resolution: **45%/vE + 7.5%**
 - Position resolution: 0.5-1mm (tentative)
 - for the meson structure measurement

The first ZDC design

Concept: Crystal + FoCal style EM calorimeter + Hadron Calorimeter

The first design: Energy deposition per layer

Layer ID	Туре	Thickness
1, 3	Crystal 3cm x 3cm	10 cm
0, 2, 4, 25, 46	Silicon 3mm x 3mm	300 µm
5-24, 25-45	Silicon 1cm x 1cm (w/ Tungsten)	320 µm
47-58	Silicon 1cm x 1cm (w/ Pb)	320 µm
59-88	Scintillator 10cm x 10cm	2 mm

Energy map w/ 100 GeV photon or neutron

Towards the update of the design

- Need understanding of the current design.
 - Check of the performance of EM Calorimeter.
 - Current EM Calorimeter is probably too long and too expensive.
 - \rightarrow Consider the reduction of size.
 - Reconstruction of neutrons.
 - See if the energy measurement is good enough.
 ZDC can get longer in Z direction. (i.e. > 2m long).

Other factors to be considered:

- Reduction of costs.
- Radiation hardness.
- Consideration of the readout system.

Reduction of EM calorimeter size

- Current EM calorimeter: 64 X_0 in total.
 - \rightarrow Consider reduction of the size.
- With reduced size of crystals (16 X_0 : tentative), performance of W/Si layers are checked.

Weighted σ X [mm

100

Tiny energy deposits for Layer ID > 30, for photons. Energy weighted sigma shows the spread of hits.

Layer ID

4 1 GeV

10 GeV

100 GeV

- Difference of shower shape.
- EM shower is fading from layer ID~20.

Deletion to 26 W/Si layers (Layer ID= 30 \uparrow) is quite safe \rightarrow Total 42 X₀

Shower shapes at layer ID =20 (photon vs neutron)

Reduction of EM calorimeter size

- Current EM calorimeter: 64 X₀ in total.
 - \rightarrow Consider reduction of the size.
- With reduced size of crystals (16 X₀: tentative), performance of W/Si layers are checked.

Reconstruction of neutrons in had. calorimeters

- First trial is ongoing:
 - With enlarged calorimeters, low energy neutrons (<= 5 GeV) are shot to 1. get [Measured energy] <-> [Induced energy] functions.

- With the functions, reconstruct neutrons in the hadron calorimeters. 2.
- \rightarrow Succeeded to reconstruct 10 GeV neutrons, but not 50 GeV neutrons.

Reconstructed Energy [GeV]

More study is needed. (A closer look indicates energy reconstruction in Pb/Si gets worse.)

Reconstruction of neutrons in had. calorimeters

- First trial is ongoing:
 - With enlarged calorimeters, low energy neutrons (<= 5 GeV) are shot to 1. get [Measured energy] <-> [Induced energy] functions.

Summary: Current status and To-do

- ZDC is a calorimeter to measure photons and neutrons at the Far-Forward region.
- Our first ZDC design is available in the simulation.
 - It is already in ECCE software and can be used as an option.
 - To do: preparation of reconstruction codes.
 - Understanding of the first design is ongoing.
 - To do: Understanding of performance against low energy photons.
 - **To do**: Reconstruction of neutron.

Also to see energy resolution and position reconstruction.

- Simulation of radiation dose is ongoing by US colleagues.
 - Using FLUKA to have estimation of realistic dose.
- To do: Consideration of readout system.
- → Will be reflected on the next design of the ZDC deign.

IP8 configuration

slide from Randika Gamage https://indico.bnl.gov/event/12068/contributions/50456/attachments/ 34996/56934/2nd IR layout.pdf

Forward detectors

