PHENIX/sPHENIX/EIC spin and cold QCD topics

Korea Japan Workshop, July 15/16

Ralf Seidl (RIKEN)

Main QCD Spin Questions

- How is the spin of the proton distributed? What is the role of gluons and sea quarks?
- What is the origin of transverse spin effects and how does it relate to the 3D momentum and position structure of the Nucleon?
- Closely intertwined: How does QCD create 99% of the visible mass of the universe? How does confinement work?

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_G + \mathcal{L}_q$

Sivers, Collins effects, TMDs GPDs, orbital angular momentum, Tomography

 Fragmentation functions and their spin, flavor, type, long. and transverse momentum dependence

Facilities and experiments

RHIC (@BNL):

longitudinally and transversely polarized p+p and p+A collisions from \sqrt{s} of 62 to 510 (200) GeV beams

• PHENIX:

- 2 Central Arms: 90 degree coverage each in η<0.35. Good EM Calorimetry, tracking, PID
- 2 muon arms 1.2<|η|<2.4

$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_G + \mathcal{L}_q$

Longitudinal Spin

Main questions at RHIC:

- Gluon spin contribution
- Role of sea quarks (light sea symmetry, strange sea)

7/16/2021

R.Seidl: Spin/coldQCD

Analyzer: Taebong Moon $\Delta g(x)$

Charged pion A_{LL}s at 510 GeV

- Addition of charged and neutral pion results at higher \sqrt{s}
- Lower x reach compared to previously published 200 GeV A_{LL} data
- Ideally sign of ∆g(x) visible in charge ordering of pion A_{LL}s
- Statistics limited due to EM shower based trigger, but important input for global fits

RIKEŀ

First direct photon xsec and A_{LL} at 510 GeV

- Part of initial RHIC-Spin suggestions in the `90s
- Theoretically, the Golden channel to access gluon polarization as hard interaction mostly q-g

(mar)

 Since EM process, statistically limited but consistent with global fit results

Analyzers: Chong Kim, Sanghwa Park Real W production as access to (anti)quark helicities

p helicity + p helicity -

RIKE

- Maximally parity violating V-A interaction selects only lefthanded quarks and righthanded antiquarks:
- Having different helicities for the incoming proton then selects spin parallel or antiparallel of the quarks
- → Difference of the cross sections gives quark helicities ∆q(x)
- No Fragmentation function required
- Very high scale defined by W
 mass
 Bourrely, Soffer

Nucl.Phys. B423 (1994) 329-348

R.Seidl: Spin/coldQCD

- so far, no global fit with all W data, yet DSSV 0.6 --- DSSV 0.5
- Clearly asymmetric polarized sea seen with all of longitudinal 510 GeV running analyzed
- Sea quark helicities well constrained at
- Asymmetric sea rules out simple pion-cloud models!

R.Seidl: Spin/coldQCD

A^μ_L (2012)

A^μ (2013)

DSSV E_T>25 GeV

 \blacktriangleright $p^{\uparrow}(p)$

9

RIKEN

Transverse spin

q-g correlation

 $(x_2 - x_1)p^+$

 $p^{\uparrow}(p) \Rightarrow$

Main questions:

- Origin of large A_Ns: initial state? Final state?
- Connections between higher twist and TMDs
- Nuclear/low-x modification of A_Ns?

p x'p' k_1 k_2 k_2 k_2 k_2 k_2 k_2 k_2 k_2

g-g correlation (trigluon)

Transverse single spin asymmetries

- Large left-right asymmetries A_N seen in polarized pp collisions from low energies up to highest RHIC energies
- Both initial state and final state effects contribute in the same asymmetries
- TMD interpretation not directly applicable as only one scale process instead of 2 scales (P_T in p+p vs Q² and P_{hT})
- Higher twist interpretation is applicable; related to the TMD moments

Phys.Rev. D90 (2014) 7, 072008 Phys.Rev. D90 (2014) 1, 012006

Updated precision for central A_Ns

PRD 103 (2021) 052009

RIKEN

- Substantial updates for π⁰ and η single spin asymmetries at central rapidity
- Possible effects pushed below the 1% level
- sensitive to quarkgluon and tri-gluon correlation functions in initial and final state effects

First direct photon A_Ns

- First direct photon A_N extracted at RHIC
- Mostly sensitive to initial state effects (no fragmentation) → quark-gluon and gluongluon correlation functions
- Power to constrain gluon-gluon correlation function as well

p_ [GeV/c]

12

RIKEN

0.04

Analyzer: JaeHee Yoo

Charged pion A_Ns at mid-rapidity

- Charged pion A_N consistent with zero and π^0 results for each charge
- But indication of differences between charges seen

Analyzer: Jeongsu Bok

A dependence of A_Ns

- Asymmetries consistent with A^{1/3} dependence as (initially) predicted by some CGC related nuclear effects (Hatta`17)
- No A dependence is ruled out
- Also consistent with suppression with increasing number of binary collisions
- However, probed x and scale too large for expected CGC effects! (S.Benic and Y.Hatta, PRD99, 094012 - Twist-3 fragmentation + gluon saturation)

 $A_{N}(\phi)$

Analyzer: Benard Mulilo, Minjung Kim p+p unfolded forward neutron A_NS

- First explicity transverse momentum dependent of p+p forward neutron asymmetries
- Initially rising asymmetries
- Indication of levelling off at higher transverse momenta
- Theory predictions (Kopeliovitch <u>PRD 84</u> (2011) 114012) based on only hadronic processes suggests linear dependence

PRD 103 (2021) 032007

sPHENIX

- Compact detector with good Jet and tracking capabilities over large range (|η|<1.4)
- Main purpose for remaining HI physics such as jet and Upsilon state R_{AA} measurements
- Many cold-QCD possibilities

Proposed run schedule, year 1-3

sPHENIX BUP2021 [sPH-TRG-2021-001], 24 (& 28) cryo-week scenarios

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.
	Ň	[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	4.5 (6.9) nb ⁻¹
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹
			\wedge		4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	
2024	p^{\uparrow} +Au	200		5	0.003 pb ⁻¹ [5 kHz]	0.11 pb ⁻¹
					0.01 pb ⁻¹ [10%-str]	
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹

sPHENIX asked to consider 20-28 week runs in 2024

• (Trans-)polarized p + p, p + A with streaming readout for 28 weeks in Run24

But short Run24 would endanger the p + Adata!

18

Gluon dynamics via γ, HF TSSA

TSSA of prompt photon EMCal-based trigger

sPHENIX BUP2021 [sPH-TRG-2021-001]

TSSA of prompt $D^0 \rightarrow \pi K$ Enabled by streaming readout

R.Seidl: Spin/coldQCD

Nature of hadron A_N in pp and its nuclear modification

- PHENIX and STAR show significant different suppression of hadron A_N from pp to pA in distinct kinematic regions
- sPHENIX hadron A_N will explore wider region to help disentangle initial/final state effects
- Enabled by streaming recorded *p* + *p* collision from far vertex collisions

7/16/2021

R.Seidl: Spin/coldQCD

Transversity via charged particle IFF

- Tremendous stat. enabled by both calorimetric jet trigger and streaming readout
- Need theory collaboration in the treatment of no-PID charged tracks & multi-dim binning
- Similarly: Sensitivity via Collins fragmentation function (hadron in jet measurements)

Fragmentation in p+A

Access gluon fragmentation function (FF) in p + p, p + A via jet FF
Calorimetric triggered jet + precision tracking

EIC accelerator to be build at BNL

- 80% polarized electrons from 5-18 GeV
- 70% polarized protons from 40-275 GeV
- Ions from 40-110 GeV/u
- Polarized light ions 40 -184 GeV (He³)
- 1000x HERA luminosities: 10³³-10³⁴ cm²s⁻¹
- CMS energies Vs = 29 140 GeV
- CD1 obtained in July 2021

Spin of the nucleon:

- Gluon spin
- Role Sea quarks

Electron Injection

EIC

Possible Detector

Other

Spectroscopy

(XYZ)

EW physics

Other

Electron Cooler

> lon Collide

Electron Storage Ring

Possible

Detector

•

QCD at high gluon densities

• Saturation effects

Nucelar effects

- Nuclear PDFs
- Passage of color through nuclear matter (nFFs, pT broadening)

Tomography :

- 3D momentum structure (q, g Sivers, Tensor charge, TMD Evolution)
 - 3D spatial structure

Origin of the Mass

- Axial anomaly contributions
- Hadron structure

25

Gluon and sea polarization

- 1 year of EIC running will pin down gluon polarization
- Using SIDIS precise determination of sea quark helicities, especially strange contribution of interest
- Indirect determination of orbital angular momentum via sum rule
- Also interesting access to flavor via charged current reactions

Tomo

Low-x

3D Transverse spin and momentum structure

Deliverables	Observables	What we learn	Stage I	Stage II
Sivers &	SIDIS with	Quantum	3D Imaging of	3D Imaging of
unpolarized	Transverse	Interference $\&$	quarks	quarks & gluon;
TMD quarks	polarization;	Spin-Orbital	valence+sea	$Q^2 (P_{hT})$ range
and gluon	di-hadron (di-jet)	correlations		QCD dynamics
Chiral-odd	SIDIS with	3 rd basic quark	valence+sea	$Q^2 (P_{hT})$ range
functions:	Transverse	PDF; novel	quarks	for detailed
Transversity;	polarization	hadronization		QCD dynamics
Boer-Mulders		effects		

Tomog

raphy

Mass

Other

Low-x

Nucleii

3 dimensional spatial structure

Deliverables	Observables	What we learn	Requirements
GPDs of	DVCS and $J/\Psi, \rho^0, \phi$	transverse spatial distrib.	$\int dt L \sim 10 \text{ to } 100 \text{fb}^{-1};$
sea quarks	production cross-section	of sea quarks and gluons;	leading proton detection;
and gluons	and polarization	total angular momentum	polarized e^- and p beams;
	asymmetries	and spin-orbit correlations	wide range of x and Q^2 ;
GPDs of	electro-production of	dependence on	range of beam energies;
valence and	π^+, K and ρ^+, K^*	quark flavor and	e^+ beam
sea quarks		polarization	valuable for DVCS

Understanding Mass of Hadrons

"... The vast majority of the nucleon's mass is due to quantum fluctuations of quark-antiquark pairs, the gluons, and the energy associated with guarks moving around at close to the speed of light. ..."

The 2015 Long Range Plan for Nuclear Science

p(k)

- Access at the EIC:
 - Trace anomaly contribution: J/Psi/U production at threshold
 - Quark-gluon energy contribution:

nucleon PDFs via (SI)DIS Sullivan process for pion/Kaon PDFs and Form factors

Kinematics at an EIC

- Need full coverage over a large range of rapidities
- Scatterd leptons to backward/central rapdities
- Hadronic final state in the forward/central region
- Auxilliary detectors far forward (ZDCs, roman pots)
- Auxilliary detectors far backward (low Q2 tagger)
- Dedicated polarimetry/luminosity detectors

$sPHENIX \rightarrow ECCE detector$

- Several detector proposals ongoing (to be submitted end of 2021): Athena (new solenoid, up to 3T), ECCE (Babar/sPHENIX magnet 1.4T), Core (very compact detector)
- Conceptually all proposals very similar

Example of ongoing resolutions studies

Example of ongoing studies on actual physics variables

A_{UT} projections for 10fb⁻¹ ,Collins π^+

Summary

- New insights into nonzero gluon polarization in the nucleon, sea quark polarizations from PHENIX
- Improved measurements for transverse spin asymmetries, nontrivial A dependence
- Several PHENIX spin results still ongoing
- sPHENIX provides unique opportunities for spin/cQCD measurements using jet and rate capabilities
- EIC is now moving fast (CD1), with collaborations in the formation process trying to make these exciting measurements a reality

37