sPHENIX-INTT/EIC Silicon Detector Introduction

RIKEN/RBRC Itaru Nakagawa

INTT Group

NEW MEMBERS

Yusuke Nakamura

Yuka Sugiyama

Genta Nakano

Purdue Univ.

Milan Stojanovic, Han-Sheng Li

Wei Xie

BNL

Rachid Nouicer, Dan Cacace,

Antonio Vederosa Soar

Connor Miraval, Robert Pisani,

Steven Andrade, Donald Pinelli,

TIRI 2 Takashi Kondo

Rikkyo Univ. Hikaru Imai.

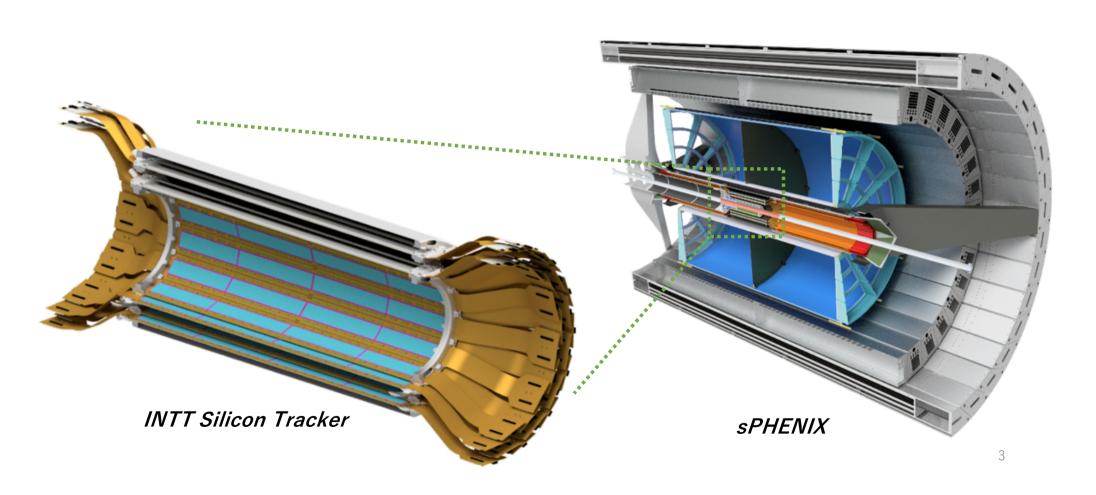
Rong-Shyang Lu, Lian-Sheng Tsai, Jenny Huang, Ou-Wei Cheng

National Central Univ.

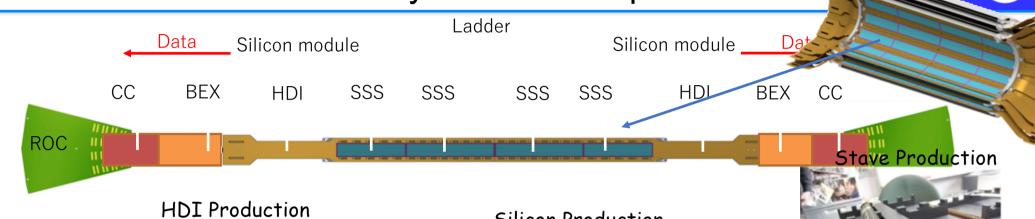
Chia-Ming Kuo, Kai-Yu Cheng, Cheng-Wei Shih, Wei-Che Tang

JAEA

Shoichi Hasegawa


RIKEN, RBRC Yasuyuki Akiba.

Itaru Nakagawa, Genki Nukazuka


Nara Women's Univ.

Takashi Hachiya, Maya Shimomura, Miu Morita, Mika Shibata, Runa Takahama, Yumika Namimoto, Yuka Sugiyama

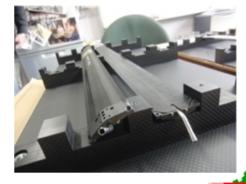
INTT Silicon Tracker

Executive Summary of INTT Components

1.2 m Bus Extender (BEX) Preproduction

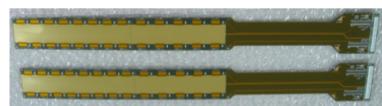
Silicon Production

Conversion Cable (CC) Pre-Production



Ladder Component Production

Bus Extender

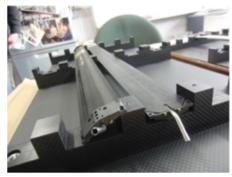


Stave

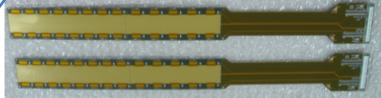
HDI

Silicon

Ladder Component Production


Bus Extender

RIKEN


Nara Women's University

Stave

山下マテリアル株式会社

Ladder Assembly System

HOME

INTRODUCTION

PROJECTS

TEAM

DEMOS

PROMOTIO

CONTACT

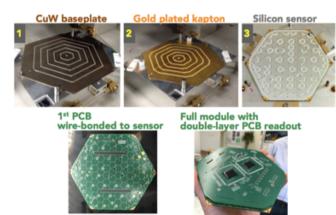
Silicon Ladder Assembly in Taiwan

臺灣大學

National Taiwan University

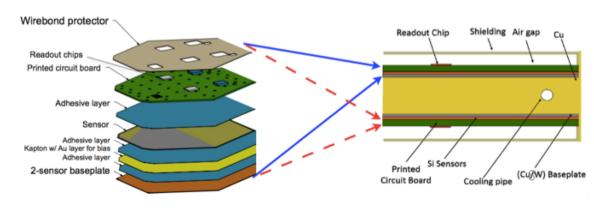
Stathes Paganis (PI)

Rong-Shyang Lu (PI)

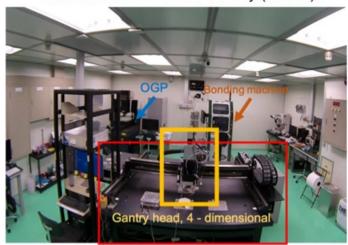

Jenny Huang (Laboratory Head Eng.)

Hsin-Yeh Wu (MSc)

Jia-Hao Li (MSc)

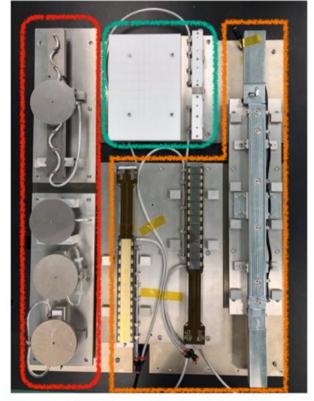

Liu Chien-Hung (Computing)

Chou CH (Technical Support)


CMS HGCal Assembly

Ladder Assembly & Silicon Test in Taiwan

Taiwan Silicon Detector Facility (TSiDF)

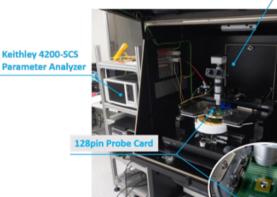

Gantry

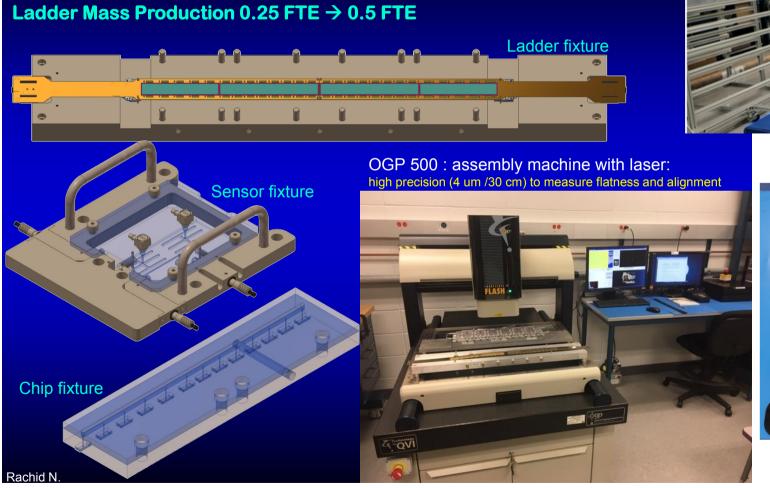
Assembly Unit : Module

- Module assembly procedures :
 - 1. Chips to HDI
 - 2. Sensors to HDI
 - 3. Encapsulation glue to HDI
 - 4. Thermal cycle test
- Ladder assembly procedures :
 - · 2 Modules to Stave

INTT assembly family on Gantry

Sample tray

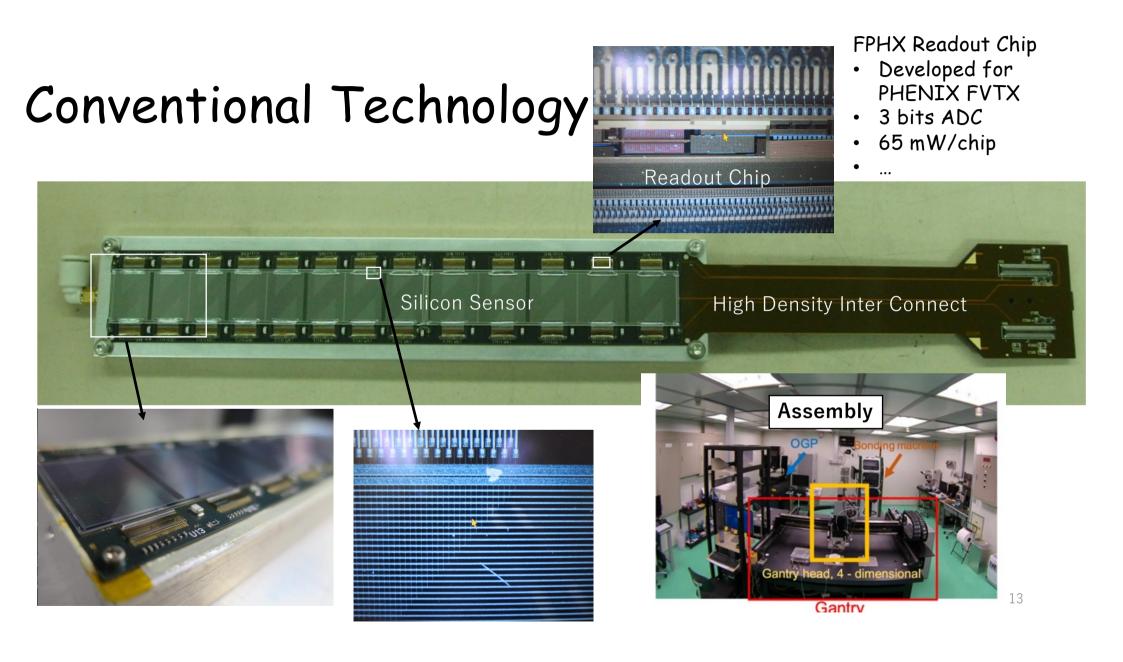



Assembly tray

MPI TS-200 Manual Probe System

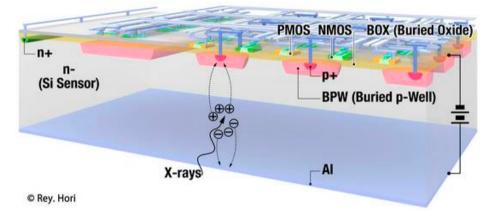
Ladder Assembly in BNL

Barrel Assembly



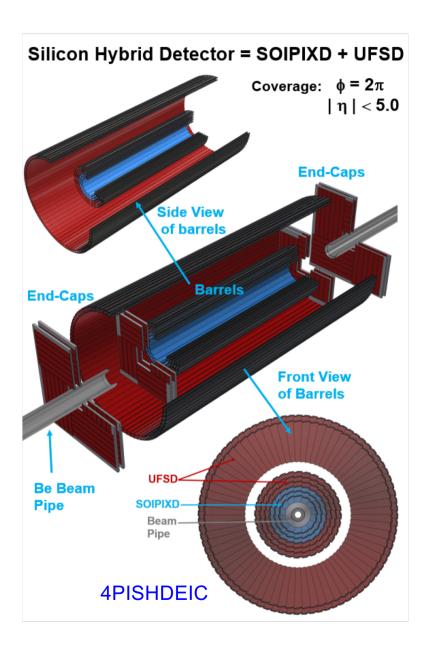
Assembled Ladders

Schedule


- Ladder Assembly Completion by JFY2021 Summer
- Barrel Assembly JFY2021 Fall
- Barrel Test JFY2021 Fall ~ Winter
- Possible Beam Test in Tohoku University in Japan this Winter

Silicon Sensor Collaboration in Japan Towards EIC

Cutting Edge Technology for Silicon Sensor


SOI:Silicon-On-Insulator Technology

To be discussed details in Prof. Tsuboyama's Talk

Lead by KEK

EIC Expression of Interest

4π Silicon Hybrid Detector with Charged Particle Identification and Highest Position Resolution for an Experiment at EIC

R. Nouicer², Y. Akiba⁴, Y. Arai³, W. Armstrong¹, D. Cacace², G. Gabriele², Y. Goto⁴, J. Haggerty², K. Hara⁷, Y. Ikegami³, A. Ishikawa³, M. Jadhav¹, S. Joosten¹, I. Kurachi³, D. Lynn², E. Mannel², S. Mazza⁶, J. Metcalfe¹, Z. Meziani¹, T. Miyoshi³, I. Nakagawa⁴, G. van Nieuwenhuizen², R. Pisani², H. Sadrozinski⁶, B. Schumm⁶, Abraham Seiden⁶, M. Togawaand³, T. Tsuboyama³, and M. Yamada⁵

Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, United States
Brookhaven National Laboratory, Upton, NY 11973, United States
High Energy Accelerator Research Organization KEK, Tsukuba, 305-0801 Japan
ARIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
Tokyo Metropolitan College of Industrial Technology, Tokyo, Japan
University of California, 1156 High Street Santa Cruz, CA 95064, United States
University Tsukuba, Tsukuba, Japan

October 6, 2020

Abstract

The authors present here a 4π silicon hybrid detector for future experiment at EIC. The 4π silicon hybrid detector uses state-of-the-art of silicon detector technology covering 2π azimuth angle, and pseudorapidity range $|\eta| \leq 5$. It consists of an inner vertex silicon tracker, outer vertex silicon tracker and silicon end-caps. The inner vertex silicon tracker is based on silicon-on-insulator monolithic pixel sensors' technology. It achieved world's best tracking position resolution of 0.68 ± 0.006 μ m in a silicon detector which it obtained with proton beam test at 120 GeV. Radiation hardness has been continuously improved and showing more than 10 Mrad(Si) tolerance in a device. The outer vertex silicon tracker and silicon end-caps are built using ultra fast silicon detectors, which are silicon-based low gain avalanche diodes read out via broad-band amplifiers. Recent results from a proton beam test at 120 GeV using three planes of ultra fast silicon detectors with silicon sensors of 35 μ m thick measured 15 ps time resolution. Ultimately, this device will measure high time resolution of \sim 10 ps enabling charged particle identification.

Expression of Interest - <SOISensor>

Please indicate the name of the contact person for this submission:

Yuji Goto <goto@bnl.gov>

Please indicate all institutions collectively involved in this submission of interest:

High Energy Accelerator Research Organization KEK, University Tsukuba, Tokyo Metropolitan College of Industrial Technology, and RIKEN

Please indicate the items of interest for potential equipment cooperation:

- Silicon sensor based on silicon-on-insulator monolithic pixel detectors (SOIPIXD) technology which has been developed by KEK group.
- The SOIPIXD demonstrated world's best tracking resolution of 0.68 \pm 0.006 μ m in a silicon detector using 120 GeV FNAL's test beam.
- The SOIPIXD is employed as the inner vertex detector of 4π silicon hybrid detector (4PISHDEIC) proposed by ANL and BNL Collaborators.
- To be developed in collaboration with 4PISHDEIC group.

Expression of Interest - <NAME>

Opportunities for engagement of other groups

- The team is open for new collaborators. Following collaborators are particularly welcome:
- Physics interest in heavy flavor using vertex silicon sensors
- Experty in silicon sensors in general, readout electronics, signal transmission, mechanical/electrical engineering, slow control systems, etc.
- Eastern Asian institutes taking geographical advantage

Additional information you think may be useful for the community to know about your expression of interest.

- SOI integrates both silicon sensor and readout electronics in the same wafer which is considered as the next generation silicon sensor technology.
- The team is open to collaborate with other collaborators who are interested in developing silicon sensor detector using SOI technology other than 4PISHDEIC.

Summary

- INTT Silicon Tracker for sPHENIX construction is on schedule
- INTT Barrel Assembly and Testing Start this Fall
- Collaboration with US Group (Argonne & BNL) to develop EIC detector based on SOI Technology developed in KEK.

Collaboration Photo

After this talk, please don't hung up yet!