

Asymmetry analysis of charged pion production in PHENIX

Transverse single spin asymmetry in charged pions production at midrapidity in polarized p + p collisions at 200 GeV

Korea Univ. Jaehee Yoo

The Proton Spin Structure

	Otania	i a model		, incary i c	
1088 ENAC managements	t	ree generations of i (fermions)	matter	interactions (bo	/ force carriers sons)
1900 EIVIC IIIEdSUIEU.	1	II	111		
$\nabla = 0.122 + 0.012 + 0.010$ Spin Duzzlol	mass ~2.2 MeV/c ²	≈1.28 GeV/c ²	≈173.1 GeV/c ²	0	≃124.97 GeV/c ²
$Z = 0.125 \pm 0.015 \pm 0.019 \implies \text{Spin Puzzle!}$	spin ½ U	% C	% t	i g	• H
1 1	ир	charm	top	gluon	higgs
		⇒96 MeV/c²	≃4.18 GeV/c²	0	<u>s</u>
$S = - = -\Lambda a + \Lambda (a + L)$	2 -% d	-% S	^{-%} b	°γ	õ
$rac{proton}{2}$ $rac{2}{2}$ $rac{2}{2}$ q,g	down	strange	bottom	photon	ğ
	COLUMN/12	105 00 May/m	1 7769 Caving	01.10.001/62	
1 1	-1	~105.66 MeV/c*	~1.//68 GeV/C*	0 7	LA NS
$\dot{-} = \dot{-} (\Delta u_{\mu} + \Delta d_{\mu} + \Delta a_{\sigma}) + \Delta G + L_{\sigma} + L_{\sigma}$	22	» μ	2		CA SO
2 2 $(-\alpha_0 + -\alpha_0 + -q_1) + -\alpha_1 + 2q_1 + 2g_1$	electron	muon	tau	Z boson	S S S
	<1.0 eV/c ²	<0.17 MeV/c ²	<18.2 MeV/c ²	≈80.39 GeV/c²	Шã
$\Lambda u_{-} + \Lambda d_{-} + \Lambda q_{-} + \Lambda \overline{u}_{-} + \Lambda \overline{d}_{-} + \Lambda \overline{s}_{-}$	H % Ve	ν _μ ν _μ	$\frac{v_{\tau}}{v_{t}}$ v_{τ}	i W	S e
$\Delta u_V + \Delta u_V + \Delta u_S + \Delta u_S + \Delta u_S + \Delta u_S$	electron neutrino	muon neutrino	tau neutrino	W boson	VEC.

In the 1980s, the EMC experiment discovered that a proton's valance quarks account for only a fraction of the proton's overall spin. New measurements from RHIC experiment reveal that gluons contribute as much as or possibly more than the quarks.

How is proton's spin correlated with the motion of quarks and gluons? -> Transverse Momentum Dependent (TMD) Functions

Higher Twist Effects

Twist-3 Function

- Multiparton correlations
- Power suppressed terms in factorization expansion by $\sim 1/Q$
- applicable when only single hard scale observed, such as in ANs in hadronic collisions. $(A_N \sim 1/p_T)$

• They also contain initial state (correlations in the nucleon) and final state (correlations in the fragmentation) effects

Particle ID for π^{\pm} and e^{\pm}

π^{\pm} identification

- Trigger π^{\pm} with a BBC and EMCal.
- Track can be divided into two categories according to RICH response at pT 5~16GeV/c.
 - RICH Hit: e^{\pm} and π^{\pm} .
 - No RICH Hit: K^{\pm} and p.
- 0.2 < E/p < 0.8
- EM shower shape probability < 0.1

e^{\pm} identification

- Trigger e^{\pm} with a BBC and EMCal.
- $|E \setminus p \langle E/p \rangle| < 2\sigma_{E/p}$ at $(\langle E/p \rangle \sim 1)$
- RICH Hit: e^{\pm} (20 MeV/c < p)
- EM shower shape probability > 0.01
- Hit requirement in inner 2 layers of VTX
- Conversion veto cut on opening angle of nearby e[±] candidates

Energy threshold for the emission of Cherenkov radiation in RICH

Particle	Electron	Pion	Kaon	Proton
Threshold	20MeV/c	4.9GeV/c	17.3GeV/c	33GeV/c

Calculation (Formula)

Geometric Weighting

$$A_{N} = \frac{1}{\langle |\cos\phi| \rangle} \frac{1}{P} A_{N}^{raw}$$
$$\sigma_{A_{N}} = |A_{N}| \sqrt{\left(\frac{\sigma_{A_{N}^{raw}}}{A_{N}^{raw}}\right)^{2} + \left(\frac{\sigma_{P}}{P}\right)^{2}}$$

Averaging Over Fills (The Weighted Mean Formula)

$$A_{N,average} = \frac{\sum_{i=Fill} \frac{A_{N,i}}{\sigma^{2}_{A_{N,i}}}}{\sum_{i=Fill} \frac{1}{\sigma^{2}_{A_{N,i}}}}$$
$$\sigma^{2}_{A_{N,average}} = \frac{1}{\sum_{i=Fill} \frac{1}{\sigma^{2}_{A_{N,i}}}}$$

Square Root Formula

$$\begin{split} A_N^{raw} &= \frac{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} - \sqrt{N_L^{\downarrow} N_R^{\uparrow}}}{\sqrt{N_L^{\uparrow} N_R^{\downarrow}} + \sqrt{N_L^{\downarrow} N_R^{\uparrow}}} \\ \sigma_{A_N^{raw}} &= \frac{\sqrt{N_L^{\uparrow} N_R^{\downarrow} N_L^{\downarrow} N_R^{\uparrow}}}{\left(\sqrt{N_L^{\uparrow} N_R^{\downarrow}} + \sqrt{N_L^{\downarrow} N_R^{\uparrow}}\right)^2} \sqrt{\frac{1}{N_L^{\uparrow}} + \frac{1}{N_L^{\downarrow}} + \frac{1}{N_R^{\uparrow}} + \frac{1}{N_R^{\downarrow}}} \end{split}$$

Relative Luminosity Formula

$$\begin{split} A_N^{raw} &= \frac{N_L^{\uparrow} - \mathcal{R} N_L^{\downarrow}}{N_L^{\uparrow} + \mathcal{R} N_L^{\downarrow}} \\ \sigma_{A_N^{raw}} &= \frac{2 \mathcal{R} N_L^{\uparrow} N_L^{\downarrow}}{\left(N_L^{\uparrow} + \mathcal{R} N_L^{\downarrow}\right)^2} \sqrt{\frac{1}{N_L^{\uparrow}} + \frac{1}{N_L^{\downarrow}}} \end{split}$$

Charged pion background

Comparison of reconstructed particle momentum distributions as a function of the transverse momentum in the data and MC simulations.

- At low p_T below 5 GeV/c the distribution is dominated by electrons (kaons and protons is insignificant)
- At higher p_T, electrons are the dominant background.

Background_Fraction calculation

Energy over momentum ratio for pion candidates in bins of transverse momentum.

- e/p < 0.2, electrons from photon conversion decay-in-flight are reconstructed with higher p_T
- e/p > 0.8, considering that most pions do not deposit all their energy in the electromagnetic calorimeter in contrast to electrons.
- Calibrate electron background fraction from simulation by fitting E/p peak to data
- Correct for electron background using asymmetries from electron enhanced data sample

Charged pion vs eletron

Sqrt_plus, Sqrt_minus

- Calculation $A_{\rm N}$ of pion enhancement sample by using pion PID cut

• T-test

$$T(p_T) = \frac{A_N^{\pi^-} - A_N^{\pi^+}}{\sqrt{\left|(\sigma^{\pi^-})^2 + (\sigma^{\pi^+})^2\right|}}$$

- Calculation $A_{\rm N}$ of electron enhancement sample by using electron PID cut
- T-test

14 p_[GeV]

$$T(p_T) = \frac{A_N^{e^-} - A_N^{e^+}}{\sqrt{\left|(\sigma^{e^-})^2 + (\sigma^{e^+})^2\right|}}$$

10

Background Subtraction

10⁵

Sounds Counts Counts Counts Counts

10

10⁵

10

Counts 10³ 10² 10

10

10⁻¹

10⁵

10⁴

Sounds Counts Counts Counts

 10^{-1}

Compare before/after background correction

KOREA UNIVERSITY 1905

A_N Comparison with Background Correction(-)

A_N Comparison with Background Correction(+)

Charged Pion A_N

- First central charged pion AN measurement at PHENIX
- *A_N* of each charge consistent with zero
- But slight indication of differences with each other. (particularly low P_T region)

Hint of different asymmetries from up and down quarks

- First A_N measurements of π^{\pm} at midrapidity
- A_N in π^{\pm} production are sensitive to quark flavors.

- With a complementary probe with improved statistics, might help to check the up and down quarks make a different asymmetries.

- It expands π^+ and π^- for each quarks flavor.

Thank you.

BACKUP

Sys_Background_Fraction

UNIVERSITY
AND A
*
1905

 $\varepsilon_{\pi} = (A_N^{\pi^{max}} - A_N^{\pi^{min}})/2$

 $\varepsilon_e = (A_N^{e^{max}} - A_N^{e^{min}})/2$ $\sigma_{syst,bg_frac} = \sqrt{(\varepsilon_\pi)^2 + (\varepsilon_e)^2}$

pion_min								
	pt	pion_bgkfrac	elec_bgkfrac	A_N	A_N_error			
	0	3.583.E-02	6.519.E-03	6.356.E-03	4.494.E-03			
	1	4.189.E-02	6.569.E-02	9.972.E-03	4.841.E-03			
-	2	1.049.E-01	1.647.E-01	5.538.E-03	7.394.E-03			
	3	5.568.E-02	8.560.E-01	2.882.E-04	7.161.E-03			
	4	1.252.E-01	9.178.E-01	-1.473.E-02	1.430.E-02			
	0	3.583.E-02	6.519.E-03	-6.065.E-03	4.174.E-03			
	1	4.189.E-02	6.569.E-02	-3.943.E-04	4.450.E-03			
+	2	1.049.E-01	1.647.E-01	-5.880.E-03	6.632.E-03			
	3	5.568.E-02	8.560.E-01	3.893.E-03	6.338.E-03			
	4	1.252.E-01	9.178.E-01	1.604.E-02	1.343.E-02			

pion_max								
	pt	pion_bgkfrac	elec_bgkfrac	A_N	A_N_error			
	0	5.358.E-02	6.519.E-03	6.326.E-03	4.581.E-03			
	1	1.358.E-01	6.569.E-02	9.934.E-03	5.464.E-03			
-	2	1.775.E-01	1.647.E-01	7.100.E-03	8.188.E-03			
	3	2.037.E-01	8.560.E-01	-9.079.E-04	9.989.E-03			
	4	3.187.E-01	9.178.E-01	-3.012.E-02	2.192.E-02			
	0	5.358.E-02	6.519.E-03	-5.818.E-03	4.255.E-03			
	1	1.358.E-01	6.569.E-02	-1.052.E-03	5.040.E-03			
+	2	1.775.E-01	1.647.E-01	-4.702.E-03	7.376.E-03			
	3	2.037.E-01	8.560.E-01	3.384.E-03	8.985.E-03			
	4	3.187.E-01	9.178.E-01	1.864.E-02	2.079.E-02			

pt

+

pion_bgkfrac	elec_bgkfrac	A_N	A_N_error		pt	$\sigma_{syst_{,bg_frac}}$
4.361.E-02	7.535.E-03	6.343.E-03	4.532.E-03		0	1 EOO E OE
6.883.E-02	7.579.E-02	9.961.E-03	5.009.E-03		0	1.509.E-05
1.375.E-01	2.037.E-01	6.348.E-03	7.795.E-03		1	1.871.E-05
1.192.E-01	1.160.E+00	-3.630.E-04	8.641.E-03		2	7.075.5.04
2.154.E-01	1.243.E+00	-2.481.E-02	1.923.E-02	-	2	7.875.E-04
4.361.E-02	7.535.E-03	-5.956.E-03	4.209.E-03		3	6.156.E-04
6.883.E-02	7.579.E-02	-5.871.E-04	4.607.E-03			
1.375.E-01	2.037.E-01	-5.269.E-03	7.007.E-03		4	8.349.E-03
1.192.E-01	1.160.E+00	3.616.E-03	7.712.E-03		0	1 236 F-04
2.154.E-01	1.243.E+00	1.775.E-02	1.819.E-02		0	1.230.L-04
					1	3.289.E-04
$- \{-1, 0, 1\}$	l			+	2	5.937.E-04
ν — τ τ,0,1	J				3	2.622.E-04

	elec_min								
	pt	pion_bgkfrac	elec_bgkfrac	A_N	A_N_error				
	0	4.361.E-02	5.710.E-03	6.343.E-03	4.532.E-03				
	1	6.883.E-02	5.732.E-02	9.961.E-03	5.001.E-03				
-	2	1.375.E-01	1.350.E-01	6.150.E-03	7.694.E-03				
	3	1.192.E-01	6.518.E-01	-7.106.E-05	7.956.E-03				
	4	2.154.E-01	6.421.E-01	-1.834.E-02	1.603.E-02				
	0	4.361.E-02	5.710.E-03	-5.957.E-03	4.209.E-03				
	1	6.883.E-02	5.732.E-02	-5.782.E-04	4.600.E-03				
+	2	1.375.E-01	1.350.E-01	-5.419.E-03	6.913.E-03				
	3	1.192.E-01	6.518.E-01	3.740.E-03	7.071.E-03				
	4	2.154.E-01	6.421.E-01	1.665.E-02	1.510.E-02				

ScaleFactor = $\frac{Gaus_amp_{data} + C \times Gaus_amp_err_{data}}{Gaus_amp_{MC} + D \times Gaus_amp_err_{MC}}$ where C, D = {-1,0,1}

Where C = 1 and D = -1	> max
Where $C = -1$ and $D = 1$	> max

1.412.E-03

Bunch shuffling

spin_blue[cross] == 1 && spin_yellow[cross] == 1) { //B down, Y down }
else if (spin_blue[cross] == 1 && spin_yellow[cross] == -1) { //B down, Y up }
else if (spin_blue[cross] == -1 && spin_yellow[cross] == 1) { //B up, Y down }
else if (spin_blue[cross] == -1 && spin_yellow[cross] == -1) { //B up, Y up }

Bunch shuffling : For each fill, the polarization directions of each crossing are randomized, and the asymmetry is calculated using the fill group method.

It involves randomizing the polarization directions of the beam such that the physics asymmetry disappears and all that is left are the statistical fluctuations present in the data.

bp0]
bp1		• red
bp2		= spins ↑
		= -1
bp3		
bpi		A Pluc
bp5		- spins l
		= 3 pm 3
cho.		
bp7		
I		1
bp0	+ · + · + · + · + · + · + · + · + · · repeat 24	
bp1	++·· repeat 4	
bp2	- + - + + - + + - + - + - + - + - +	
<i>bp3</i>	···++ repeat 4	
bp4	• • • • • • • • • repeat 8	
bp5	· · · · · · · · · · · · · · · · · · ·	no repeat
<i>bp6</i>		no repeat
bp7		no repeat

Pattern of each fillnumber (example)						
RunNumber		FillNumber	Crossing shift	# of pattern		
43	0024	18893	5	1		
43	0116	18894	5	7		
43	0117	18894	5	7		
43	0120	18894	5	7		
43	0123	18894	5	7		
43	0124	18894	5	7		
43	0125	18894	5	7		
43	0128	18894	5	7		
43	0131	18894	5	7		
43	0133	18895	5	3		
43	0134	18895	5	3		
43	0141	18895	5	3		
43	0142	18895	5	3		
43	0143	18895	5	3		
43	0234	18897	5	8		
43	0235	18897	5	8		
43	0236	18897	5	8		

Sys. Unc. From Bunch shuffling

Sys. Unc. From Bunch shuffling
Ex) 1.018
$$\sigma_{stat} = \sqrt{(\sigma_{stat})^2 + (\sigma_{syst})^2}$$
 for π^- 6~7 pt bin.
 $\sigma_{syst} = \sigma_{stat} \sqrt{(1.018)^2 - (1)^2} \approx 0.000954$

A_N with Systematic Uncertainty

A_N with systematic uncertainty

pT(GeV)

KOREA

		pt	<pt> in GeV/c</pt>	A _N (10 ⁻³)	Stat. (10 ⁻³)	Syst. (bg frraction) (10 ⁻³)	Syst. (bunch shuffling) (10 ⁻³⁾	Syst. (total) (10 ⁻³⁾
		5~6	5.56	6.34	4.53	0.015		0.015
		6~7	6.46	9.96	5	0.019	0.954	0.954
	-	7~8	7.45	6.23	7.74	0.788	0.346	0.860
		8~11	9.08	-0.18	8.22	0.616		0.616
		11~15	12.42	-21.05	17.36	8.349	5.326	9.903
		5~6	5.56	-5.96	4.21	0.124	1.530	1.535
		6~7	6.46	-0.58	4.6	0.329		0.329
	+	7~8	7.45	-5.35	6.95	0.594		0.594
		8~11	9.08	3.69	7.31	0.262	2.701	² 2.714
		11~15	12.42	17.11	16.38	1.412	6.280	6.437

Compare before/after background correction

Sqrt_plus, Sqrt_plus_corr

 Using pion enhancement sample by using pion PID cut

$$T(p_T) = \frac{A_N^{\pi^{before}} - A_N^{\pi^{after}}}{\sqrt{\left|(\sigma^{\pi^{before}})^2 + (\sigma^{\pi^{after}})^2\right|}}$$

 Using pion enhancement sample by using pion PID cut