Introduction to polarized high energy electron scattering

T.-A. Shibata

Nihon Univ. and Tokyo Tech

July 15, 2021

List of contents

- A. Introductory remarks
- 1. Kinematical variables of scattering, Q^2, x, \dots
- 2. Structure functions
- B. Several experiments of lepton deep inelastic scattering
- 1. Scaling and deep inelastic scattering
- 2. EMC-effect
- 3. The proton spin problem
- 4. Flavor asymmetry of sea quarks in the proton

1. Kinematical variables of scattering, $Q^2, x, ...$

The electron energy and the proton energy are asymmetric in collider experiments.

The electron energy is lower.

The laboratory frame \neq the rest frame of the initial proton \neq the center of mass frame

Important kinematical variables are Lorentz invariant, so we make use of Lorentz invariance in experiments. They can be evaluated in any frame.

 Q^2 , ν , y, x, W, s are Lorentz invariant variables.

$$k = (E/c, 0, 0, k^{3}) \approx (E/c, 0, 0, E/c)$$

$$k' = (E'/c, \vec{k}')$$

$$P = (P^{0}, 0, 0, P^{3}) = (Mc, 0, 0, 0)$$

$$q = k - k' = (\frac{E-E'}{c}, \vec{k} - \vec{k}')$$

$$Q^{2} = -q^{2} \approx 4\frac{E}{c}\frac{E'}{c}\sin^{2}\frac{\theta}{2}$$

$$\nu = \frac{P \cdot q}{M} = (P^{0}q^{0} - P^{3}q^{3})/M = E - E'$$

$$y = \frac{P \cdot q}{P \cdot k} = (P^{0}q^{0} - P^{3}q^{3})/(P^{0}k^{0} - P^{3}k^{3}) = \frac{\nu}{E} = \frac{E-E'}{E}$$

$$x = \frac{Q^{2}}{2P \cdot q} = \frac{Q^{2}}{2M\nu} = \frac{Q^{2}}{2(P^{0}q^{0} - P^{3}q^{3})}$$

$$(Wc)^{2} = P'^{2} = (P + q)^{2}$$

$$= (Mc)^{2} + 2P \cdot q - Q^{2}$$

$$s = (P + k)^{2}c^{2} \approx (Mc)^{2} + 2Pc \cdot kc = (Mc)^{2} + 2Mc^{2}E$$

$$\omega = \frac{1}{x}$$

M is the proton mass.

The right-hand side is for the frame where the initial proton is at rest.

The followings are the three basic plots of the kinematic variables.

6/24

 $\begin{array}{l} W \mbox{ is the invariant mass of hadron system in the final state:} \\ W^2/c^2 = (P+q)^2 = P^2 + 2P \cdot q + q^2 = (Mc)^2 + 2P \cdot q - Q^2, \\ \\ W^2/c^2 - (Mc)^2 = 2P \cdot q - Q^2. \end{array}$ (1)

From this equation, one can see that $W^2/c^2 - (Mc)^2 = 0$ corresponds to $2P \cdot q - Q^2 = 0$ which means x = 1. 7/24

$$W^2/c^2 = (P+q)^2 = P^2 + 2P \cdot q + q^2 = (Mc)^2 + 2P \cdot q - Q^2,$$

 $Q^2 = 2M\nu - \{(Wc)^2 - (Mc)^2\}.$

The deep inelastic region (W > 4 GeV) and the resonance region are identified in this plot.

$$Q^{2} = 4EE'\sin^{2}\frac{\theta}{2} = 4E(E-\nu)\sin^{2}\frac{\theta}{2} = 4E\sin^{2}\frac{\theta}{2} \cdot (E-\nu)$$
(2)/24

2. Structure functions

$$\frac{d^2\sigma}{dE'd\Omega} = \left(\frac{\alpha_0^2\cos^2\frac{\theta}{2}}{4E^2\sin^4\frac{\theta}{2}}\right)\left\{W_2 + 2\tan^2\frac{\theta}{2}W_1\right\}$$
(3)

In case of longitudinal polarization,

$$\frac{d^2\sigma^{\uparrow\downarrow}}{dE'd\Omega} - \frac{d^2\sigma^{\uparrow\uparrow}}{dE'd\Omega} \propto (E + E'\cos\theta) M G_1 - Q^2 G_2.$$
(4)

In the Bjorken limit (x fixed, $Q^2, \nu \to \infty$),

$$\nu W_2 \to F_2, \quad Mc^2 W_1 \to F_1, \quad M^2 \nu G_1 \to g_1, \quad M \nu^2 G_2 \to g_2.$$
(5)

Further structure functions when the proton is transversely polarized.

1. Scaling and deep inelastic scattering

Nobel prize in physics, 1990, J. I. Friedman, H. W. Kendall, R. E. Taylor MIT-SLAC, Phys. Rev. Lett. 23 (1969) 930-934, 23 (1969) 935-939.

 $E_e = 7 - 17.7 \text{ GeV}, \quad \theta = 6^\circ, \ 10^\circ.$ *W* dependence of the cross section

The horizontal axis is W (GeV), ranging from 0.8 to 3.6 GeV. Resonances are seen between 0.938 to 2 GeV. Q^2 dependence of the cross section at W = 2, 3, 3,5 GeV. Calculaton of elastic scattering (W = 0.938 GeV) is also shown.

 Q^2 dependence is small at W = 3 and 3.5 GeV

2. EMC-effect Modulation of F_2 in nuclei

 $F_2(Fe) / F_2(D)$

EMC, J.J. Aubert et al., Phys. Lett. 123B 275-278 (1983)

muon beam energy: 100, 200, 250, 280 GeV, covered *x* range: 0.03 - 0.65

+15% enhancement, -10% depletion.

 $F_2(Fe) / F_2(D)$ was fitted with a + b x

muon beam energy: 200 GeV, covered x range: 0.0035 < x < 0.65

Electron scattering at large x, $x \ge 1$, JLab x = 1 corresponds to eN elastic scattering, scattering from correlated nucleons

3. Proton spin problem

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z^q + L_z^G,$$
(6)
$$\frac{1}{2}\Delta\Sigma = \frac{1}{2}\int_0^1 (u\uparrow(x) - u\downarrow(x))dx + \frac{1}{2}\int_0^1 (d\uparrow(x) - d\downarrow(x))dx \quad (7) + \frac{1}{2}\int_0^1 (s\uparrow(x) - s\downarrow(x))dx = \frac{1}{2}(\Delta u + \Delta d + \Delta s).$$
(8)

Contribution of spins of <u>quarks</u> and <u>anti-quarks</u> to the proton spin.

EMC J. Ashman et al., Phys. Lett. B 206 (1988) 364, EMC J. Ashman et al., Nucl. Phys. B 328 (1989) 1.

Longitudinally polarized muon and longitudinally polarized proton, Muon beam energy 100, 120, 200 GeV at CERN.

$$A = \frac{\sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}}{\sigma_{\uparrow\downarrow} + \sigma_{\uparrow\uparrow}} \longrightarrow \frac{g_1(x)}{F_2(x)}$$
(9)
$$\int_0^1 g_1^{\rm p}(x) \, dx = \frac{1}{2} \left(\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s\right)$$
(10)
$$= \frac{1}{12} \left[(\Delta u - \Delta d) + \frac{1}{3} (\Delta u + \Delta d - 2\Delta s) + \frac{4}{3} (\Delta u + \Delta d + \Delta s) \right]$$

17 / 24

EMC's result: $\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$, Contribution of the spins of quarks and anti-quarks to the proton spin is $(12 \pm 9 \pm 14)$ %.

Further studies by SMC, HERMES, COMPASS, PHENIX, STAR, JLab experiments, SpinQuest,..

4. Flavor asymmetry of sea quarks in the proton

Gottfried sum is defined as

$$S_{\rm G} = \int_0^1 dx \, \frac{F_2^{\rm p}(x) - F_2^{\rm n}(x)}{x} \tag{11}$$

$$F_{2}^{p}(x)/x = \frac{4}{9}(u_{v}^{p} + u_{s}^{p} + \bar{u}^{p}) + \frac{1}{9}(d_{v}^{p} + d_{s}^{p} + \bar{d}^{p}) + \frac{1}{9}(s^{p} + \bar{s}^{p})$$

$$F_{2}^{n}(x)/x = \frac{1}{9}(d_{v}^{n} + d_{s}^{n} + \bar{d}^{n}) + \frac{4}{9}(u_{v}^{n} + u_{s}^{n} + \bar{u}^{n}) + \frac{1}{9}(s^{n} + \bar{s}^{n})$$

$$S_{\rm G} = \frac{1}{3} + \frac{2}{3} \left(\int_0^1 \bar{u}^p \, dx - \int_0^1 \bar{d}^p \, dx \right). \tag{12}$$

NMC, P. Amaudruz et al., Phys. Rev. Lett. 66 (1991) 2712-2715,

NMC, M. Arneodo et al., Phys. Rev. 50D (1994) R1-R3. muon beam energy: 90 and 280 GeV, covered x range: 0.004 – 0.8.

20 / 24

$$S_{\rm G} = \frac{1}{3} + \frac{2}{3} \left(\int_0^1 \bar{u}^p \, dx - \int_0^1 \bar{d}^p \, dx \right) = 0.235 \pm 0.026,$$
$$\int_0^1 \bar{d}^p \, dx - \int_0^1 \bar{u}^p \, dx = 0.147 \pm 0.039. \tag{13}$$

 \bar{d} is more abundant than \bar{u} in the proton.

Flavor asymmetry of sea quarks in the proton.

Drell-Yan process in pp and pd reactions. NA51, NuSea/E866, SeaQuest

$$q + \bar{q} \to \gamma^* \to \mu^+ \mu^-$$

SeaQuest, J. Dove et al., SeaQuest, Nature 590 561-565 (2021) FNAL, 120 GeV proton beam

The ratio is about 1.5 at x = 0.13 - 0.45. Data from lepton deep inelastic scattering and hadron reactions are complementary.

Summary

• In the first half of the talk, I showed the relation between the kinematical variables.

In designing and building the detector, k' or (E', θ, ϕ) in the laboratory frame are the important variables as the detector sits in the laboratory frame.

Events are detected only when E', θ, ϕ are inside the range of the detector.

Once the events are detected, the cross sections can be converted using Jacobian determinant between (E', θ, ϕ) and (Q^2, x, ϕ) .

• In the second half of the talk, I showed four examples of the experiments.

After the initial finding of scaling and deep-inelastic scattering at the electron accelerator of SLAC, high energy muon beams at the proton accelerators benefitted from its capability to access the small x region.

Experiments were extended to the e-p collider.

Hadron physics will be further extended in future with the new facility of polarized e-p and e-A collider.