Crystal

Introduction

Study today:

- Single crystal layer with the thickness of:
 7 cm (7.9 X₀) 19 cm (21 X₀)
- Two crystal layers with the thickness of:
 5 cm 9 cm
- Shot 100 MeV, 300 MeV, 500 MeV photons at the center of the surface.
 - Photons induced at the edge of towers.

Soft photons don't require very good position / energy resolution.→ Can be a single layer?

Still, ~40 GeV photons require good position resolution of O(1) mm.

Readout of crystal will sit behind them.

• 3 cm x 3 cm tower structure.

3 cm

cm

Single Layer: Distribution of towers

N of crystal towers (E>10MeV)

with E_{tower} >0 MeV, but most of them have small energies.

Single Layer: Thickness scan -1

 \rightarrow Look at the fraction of events failing to measure 75 % of the photon energy. (next slide)

Single Layer: Thickness scan-2

3x3 towers

All towers

◆ 15 cm would be a reasonable choice.

Single Layer: Position reconstruction from crystal

• Take the energy-weighted mean position of 3x3 towers.

As expected from the tower size of 3 cm, position resolution in crystal would be O(1) cm.

• (A position scan would provide a proper resolution.)

Two Layers: Tower distributions on the second layers

Crystal Layer 0

2nd layer has wider distribution and smaller energy deposits.

 \rightarrow Use - 5x5 towers

- Seed: a tower with the highest energy, w/ and w/o a threshold of **20 MeV**.

Crystal Layer 0

Two Layers: 5x5 energy distributions

No energy threshold on 5x5 cluster seeds

Two Layers: 5x5 energy distributions

Seeds should have E_{Tower} > 20 MeV

<u>100 and 300 MeV</u>: the thicker the better. \rightarrow The 1st layer can measure most of the energy.

<u>500 MeV</u>:

7cm has the slightly higher peak than 9cm. → Sizable energy deposits in both layers might give better resolution.

Two layers

w/ minimum energy requirement

- If low energy clusters are measurable, 7 cm is a reasonable thickness for the two-٠ layer structure.
- Performance against low energy photons gets worse with a requirement of a minimum energy for cluster seeds.
 - It is better to measure the photon energy as much as possible in the first layer.

Summary

- Crystal will measure O(100) MeV photons.
 - Concept:
 - No good energy resolution is needed, but a reasonable energy deposits in the crystal is needed for the identification.
 - No good position resolution is needed.
- Thickness scan with 100, 300 and 500 MeV photons.
 - Single layer:
 - Energy is measured from 3x3 towers.
 - 15 cm thickness allows to measure 75 % of photon energies for > 99% of events.
 - Position resolution will be O(1) cm.
 - Double layers:
 - Energy is measured from 5x5 towers from seeds w/ and w/o energy threshold.
 - w/o energy threshold \rightarrow 7 cm thickness for each is fine.
 - w/ energy threshold \rightarrow the thicker is the better
- Next: See performance against ~40 GeV photons.
 - Can we have a good position resolution for 40 GeV photons?

Energy from all/3x3/5x5 towers

• Comparison of energies measured using all / 3x3 / 5x5 towers.

Recap of my previous study: W/SI layers

Previous study: Looked at the number of W/SI layers with <u>16 X₀ crystal layers</u>.

Previous conclusion:

Reduction to layer ID=30, i.e. 26 W/SI layers, is quite safe with 16 X₀ crystal layers.

Study today suggests <u>17 X₀ of a single crystal layer/ 16 X₀ crystal layers</u>

 \rightarrow We can use the same number of W/SI layers.

Or, even we can reduce more:

Further reduction of 4 layers won't harm (cf. layer ID = 26).

Thickness scan with a threshold of 66%

