Composition of RHICf-II detector

18 Aug 2021 Minho Kim

RHICf detector geometry

44 X_0 , 1.6 λ_{int}

- RHICf detector consists of 17 (16) layers of tungsten, 16 layers of GSOplate for energy measurement, and 4 layers of GSO-bars.
- Thickness of thinner forward tungsten is 7 mm and thicker backward one is 14 mm.
- It has enough radiation length for photon but poor nuclear length length for neutron.

MiniFoCal geometry by Norbert

- HG: 0.3 mm x 0.3 mm, LG: 10 mm x 10 mm
- In the simulation, thickness of tungsten get thicker and the detector dimension is also modified to the RHICf-II one, 8 cm x 18 cm.

Simulation setup

- The longitudinal tungsten dimension started from the RHICf detector one: forward 11 layers: 7 mm + backward 5 layers 14 mm.
- Photon energy resolution is enough.
- Neutron energy resolution depending on the number of thicker tungsten and their thickness was studied.
- Neutron and photon position resolution depending on the position of the HG layer was studied.

RHICf vs RHICf-II: 100 GeV neutron

- Since the thickness of layer of the RHICf-II detector is thinner than RHICf one, the average Edep. is smaller.
- For a practical comparison, 7 MeV was applied for a shower trigger (Edep. of any three successive layer is larger than 7 MeV).

Energy reconstruction

- Only shower triggered events were used.
- The energy is reconstructed using the total energy deposits in the LG layers.
- When the energy is summed, Edeps of thicker tungsten were weighted following the tungsten thickness.

Energy resolution

- Energy resolution decreases as the tungsten thickness and the number of its thicker layers increase.
- If the thickness get thicker than a level (shower particles are too much absorbed in the tungsten), the efficiency starts getting down.

Lower efficiency at thicker tungsten

If the tungsten is too thick, more particles are absorbed in the tungsten, thereby relatively smaller energy deposit behind.

Energy resolution: 100 GeV neutron

- With 21~28 mm tungsten thickness and higher trigger threshold, we can approach the ZDC resolution.
- Lower efficiency ~50% would be OK due to abundant neutron statistics in the very forward region.

Position reconstruction

- Middle positions of each cell were assumed as the cell position.
- 2D Edep map was projected to x and y-axis.
- The projected Edep distribution over cell position was fitted by Lorentzian-based function which was used at RHICf analysis.

Position resolution

- FWHM was estimated at x_true x_rec distribution.
- If the layer location is more forward than 7th, better position resolution than RHICf is expected for photon.
- If we use only one HG layer, layer location of ~5th would be the best.

Feasibility of the detector size

Limit of the detector size is related with the Pb (blue) whole and how far the ZDC (in the Pb hole) can be moved backward.