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Nuclei: many body system composed of protons and neutrons

* Many-body quantum-system with spontaneous order and self
organization

 Shell structure without inner core
« Two aspects: microscopic and macroscopic
 Superposition of single state nucleon <-> bulk matter (hydro, gas)

e Equation of State (EOS) is a thermodynamic equation relating state
variables which describe the state of matter.

e There is a EOS to describe the state of nuclear matter.,



Important term in nuclear Equation Of State (EOS):
Symmetry energy

Equation of State (EOS): Equation for the relation among pressure (p), temperature (7=kgT),
and volume(V) to describe the states of matter

Equation of state of nuclear matter can be reconstructed by using the differential
thermodynamic identity:

E(T,p,8) = E(T,p,6 = 0) + Egym (T, p)5% + 0(6*)
0 = (Pn—Pp)/P

The asymmetric term of nuclear EOS depending on &

Often temperature(T) is assumed to be about 0.
» Because experimental constraint mainly give by nuclear structure information.

e Neutron star is kind of cold matter where T can be assumed to be zero.: T ~ 106 K ~ 100 eV

* Fermi-energy of neutron: O(10)MeV



Important term in nuclear EOS : Symmetry energy

E(T,p,6) =E(T,p,6 =0) + Esym (T, p)&? + 0(5")
0 = (Pn—Pp)/P
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Motivation to study symmetry term of nuclear EOS:
Important for nuclear/astro-physics
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 Sustain neutron rich matter of heavy ions/super heavy ions. | Tormpion

 Information for beyond the super heavy elements.
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Supernovae process

* Symmetry term affects supernovae explosion dynamics.

Neutron star structure

» Supreme asymmetry nuclear matter

* Neutron star is formed with symmetry energy

MNeutron Superfluid +
on

s MNeutron Vortex Prni

Neutron star merger/Gravitational wave

» Wave structure of gravitational wave made by neutron star merger depends on its equation of state



A lot of predicted EOS was ruled out by the observation
of heavy neutron star

e Mass of J1614-2230 pulser is 2 solar mass

Demorest et al., Nature 467 (2010) 1081
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EoS and tidal deformation of the
Neutron Star Merger

A. Bauswein, S. Goriely, and H.-T. Janka
APJ, 773, 21 (2013)
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Constraint of nuclear EoS from tidal deformation of NS Merger

Posterior distributions for each waveform models
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Current issue on supernovae simulation related to EOS

* Around 2005~ it was succeeded to reproduce the explosion by employing 2D,
3D models.

o Still the released energy from explosion is not large enough to explain the
observation.

e 1~2 order smaller

 Prefer soft EOS to reproduce the explosion.

« Softer EOS leads to a more compact proto neutron star, stronger instabilities, earlier

explosions. .
+ EOS at p=2~3p,, Z/A~03-0350s w- M
important for supernovae .
calculation. : ‘
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Experimental study of symmetry energy as
Input for astrophysical researches

®: Friedman-Pandharipande EOS

« 20 years ago, Brown showed that many X SkX
different Skyrme effective interactions = LT
. . . . . - Neutron EOS f g
can fit the binding energies of Sn nuclei eli8rosnkyrme >
between 1OOSn and 13ZSn 40 |~  parameter sets 7
. (out of 26 sets) |
* Yet predict very different density - b
=
dependences for the symmetry energy 2 |
term in the nuclear EoS. S
. &% @ f%
» Well determined only around p~ p, and i _ g
Z~N i e
10 i
e EOS for p~ py, Z< <N by last decade study. i \
» Higher order effect such as 3BF can not be | . | |

neglected. 0.0 0.1 0.2 03
neutron density 1/fm3

B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).



Constraint given by terrestrial nuclear experiments

50 .
from 8rnp ' HIC(n/p ratio)
- HIC (isodiff)

Phys. Rev. Lett. 111, 232502 (2013).49
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DFT mass: Analysis of
nuclear masses using DFT
PRC 87, 015806 (2013).

<

o of (n,p) reaction

ap: “%8Pb electric dipole
polarizability
PRL 107, 062502 (2011).

Nucl. Phys. A 958, 147-186 (2017).
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* The region where the experimental constraint on EoS depends on the type of
experimental constraint.

 Constraints based on nuclear structure information = p~p, or more dilute matter.

* No data point above saturation density.
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Heavy RI collision experiment
for the study of high dense
nuclear EOS

Sotrrr
Introduction to |SYTTRIT /




Terrestrial experimental study of high dense matter nuclear symmetry energy

- heavy Rl collision

Central density as a function of T.

Au+Au coII|5|ons PRC87 067601
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« Currently, heavy ion collision is the kind of unique way to realize high dense matter in

Heavy lon

Heavy lon

IBUU by Li

* Quite challenging to extract the information of high dense matter symmetry energy since

we need the help of transport model.
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We need to rely on transport theory to reproduce heavy ion collisions

imulate

H|C
Observables Transport

In HIC

y (fin)

» Theoretical tool to describe HIC dynamics: transport theory:

* QMD: Quantum Molecular Dynamics PSR
. %%Léégsyltzmann—Uehling—Uhlenbeck eq. (Bertsch Phys. Rep. 160, 189 A
« Each nucleon is represented by ~1000 test particles that ;
propagate classically under the influence of the self-consistent 15260, 12451, £yp=270A MV, b0 fm 120 e
mtean %.eld U and subject to collisions due to the residual 40
interaction.

201
They are supposed to describe —— O
Mixture of equilibrium and non-equilibrium state }

Final state particles nucleon flows, the nucleation of weakly bound =
light particles and the production of nucleon resonances.

—->What we can observe experimentally x-z plane

—40}
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Experimental observables from heavy ion collision to constrain
the symmetry energy
* No direct observables, but contains the information of symmetry energy

« Symmetry energy = appeared as pressure difference between neutron
and proton

Stiff symmetry energy
- lower p,/p, in higher dense region
- lower n/p, less triton "
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Experimental observables from heavy ion collision to constrain
the symmetry energy

* Many type of probes are proposed to study symmetry energy from HIC
» Prefer less dependent on the models

* Mainly ratio of isospin opposite particles to maximize the dependence on
symmetry energy: ~O(10%) difference
projectile ®

Proton-to-neutron ratio
e t+ to m- ratio

Triton to helium-3 ratio
» expected comparable to proton-to-neutron ratio
e t:d+p, 3He: d+n

Particle production anisotropy
 Reflect pressure difference in bulk matter
 so-called “flow”

10fm ] 16



Charged pion ratio as a probe to constrain symmetry energy

* Softer EOS->larger p,/p, in high dense region->larger =~ production

* If all of pions are produced through A production, Y(r")/Y(n*)=(pn/p,)?

* In equilibrium state, p(n*)-pu(n")=2(Up-Hn)

e Y(m)/Y(x*) as well as Y(n)/Y(p) = good probe for nuclear EQS

T production (main reaction)

nn — pA~

A~ = nm

Tt production (main)
pp — nATT
A++

— prt

Simple expectation :
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Liet al., Nucl.Phys. A734 (2004) 593.
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pion ratio probes the symmetry energy at p~1.5p,
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Heavy Rl Collision program @RIKEN-RIBF: SPIRIT project

« Experimental project to give a constrain on the density dependent
symmetry energy main for higher dense region.

» Systematic measurement in same Z but different N system realized

with heavy Rl beam Yong, PRC 73, 034603 (2006)

25

* Control nuclear effect. .ol densty -
* p~2p, nuclear matter at RIBF energy. 5 g T
= e 15F
» Effect of symmetry energy on each observables is expected to be = L/ E_~400 AMeV
largest around this energy region. (especially pion emission) | b=1 fm
0.5 —t—
st experimental campaign using Sn (Z=50) isotopes finished 20| 1 Npforeacheos
successfully. JESL] S— —
« 2016 Apr. - Jun. E sl
« Measurements were performed for 4 systems. 4 kT
1.2 — e
132 124 _ _ 0 5 10 15 20 25 30
* 295N + 95N @y, /A = 270 MeV, 8yger = 0.22 -
124 112 _ _
+ 1245 + 11250 @, ,/A = 270 MeV, 8, g = 0.15
112 124 — _
» 1125n + 124Sn @E,,, /A = 270 MeV, 8, e = 0.15
108 112 — _
* 9Sn + '1°5n @Ey,, /A = 270 MeV, dygem = 0.09



SPIRIT Collaboration for HIC Exp. at RIBF
SAMURAI Pion Reconstruction and lon Tracker

International Collaboration aiming to study
density dependent symmetry energy
through Heavy RI Collision experiments.

% U.S. DEPARTMENT OF
JENERGY

Office of Science
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RIKEN-RIBF: RI production at world leading Rl facility
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SPIRIT experimental setup top view:
beam line+TPC+trigger+neutron detector

BigRIPS

Chamber in SAMURAI magnet B=0.5T

Beam Tracker

scintillator
Sn beam /
STQ Beam—>—
target
MICHIGAN STATE — “-l
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Particle ID and reconstruction with Time Projection Chamber

» Detect most of particles produced in a collision.
* Optimize gain for pion measurement.

TPC ParticleID for *?Sn+'**Sn

1 h2GoodPID_1325n_LR3

* Particle identification from dE/dx — rigidity
correlation

ntries 5.129304e+07

10°

Mean x 1028

* Rigidity = reconstruction of particle

Mean y 269.9
momentum ‘

10°
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Std Dev x 513.7
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Result on pion multiplicity: number of pions

generated collision by collision
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Result on pion multiplicity: pion ratio
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* The height of the boxes is given by the difference of predictions for the soft and

stiff

symmetry energies.

e Deviation among transport models is larger than sensitivity on symmetry energy.

 Different assumptions regarding the mean field potentials for A baryons and

pions can influence the pion mdaltiplicities.
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Giving feedback to transport theory to reduce the discrepancy

among .moldels. -> to be updated!
Ulake

Observables i€

In HIC
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High-momentum pion data: reduce the influence from the
assumption for A/pion mean field potential

* Sensitivity to the isospin dependence of mean field dominates at high-pT.
e Neutron rich system
132Gy + 124Gp, F/A = 270 MeV 108Gy + 112G, F/A = 270 MeV shows more
° sensitivity at high-pT.
10! 1@ y .
Ry [ dcQMD L(MeV) Am,, e Calculation
0 | — 60 -0.336 underestimate at low-
%) -== 60 0.336 T
pT.
= —— 151 -0.336
I --- 151 0.336 - Coulomb effect
ﬁ and/or non-resonant
o pion production.
a
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S | A . - 42<L<117
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Constrain given by SPIRIT shows consistency with other
constrains
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Compilation of experimentally determined symmetry energy

80 : : : : , : , _ |
| % HIC(n/p) -
DFT mass: Analysis of nuclear | Y¢ HIC(isodiff) New point arXiv:2106.10115v1
masses using DFT ol . Mass(Skyrme) T ]
PRC 87, 015806 (2013). [ 2 Mass(DFT) .
> [ "V"’/,-—-"_’" _
IAS: & of (n,p) reaction é | ¥ PREX-II , /.::.:_—_j --------------- .
NPA 958, 147-186 (2017). = 40[ V HIC(m) ] ._
‘-97 o7 ::—----" ------
ap: 298Pb electric dipole n e e
polarizability 20 |- ) e T
PRL 107, 062502 (2011). : i%;/’ ~IT7——— Fitting only with low density
ol : data
|/ )
0 : . !
0 1 2
Density p/p,

o Fitting result S;=(33.3 £1.3) MeV, L= (59.6 £ 22.1) MeV
 suggests a radius for a 1.4 solar mass neutron star of 13.1=0.6 km



Conclusion

 To give constraint on nuclear symmetry energy, pion production in neutron
rich heavy ion collision was measured at RIKEN-RIBF.

 Pion production is expected to probe the symmetry energy at p~1.5%p,.

« According to the comparison of data with transport model: 42<L<117.

* We need to establish the sophisticated transport model to understand the
collision dynamics and constrain the nuclear symmetry energy more
precisely.

* Nuclear symmetry energy driven from the compilation of experimental
data gives consistent result with the radius obtained with NICER.
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