Dose in ZDC and consideration for performance and cost

Yuji Yamazaki

eRD27 meeting 15 Sep 2021

EIC日本グループ会合 2021/09/21

Dose estimation by Vitali

• Thank you so much for sharing the results!!

dn/dt =2.E+0[neut/cm²/ep]*1.E+6[ep/s]=**2.** E+6 [neut/cm²/s]

e(10)+p(275). DOSE in ZDC x/cm=(-5,5) EIC-EP-JUN23-3vac 57

concentrated at zero degree

0.000

dE/dt =1.E-3[GeV/g/ep]*1.E+6[ep/s]=1.E+3 [GeV/g/s]

Total ionization dose: comparison with Yuya's study

- Yuya's numbers were:
 - He used single neutron, not the cocktail of π^0 , n, stray charged particles
 - Maximum dose with a 200 GeV neutron: 1.5×10^{-10} Gy / event
 - Assuming 10⁷ beam gas rate (very pessimistic, like 10⁻⁷ mbar) it corresponds to 15kGy / year
 - If it is scaled to $10^6 ep$ rate, 1.5 kGy/year
 - assuming that the primary neutron spectrum is similar
 - no consideration for beam gas about the vacuum profile: assuming things coming from near the interaction point

radiation dose at each energy

3

Vitali's number for $ep(10 \times 275)$

- $1.0 \times 10^6 \text{ eV/g/event} = 1.6 \times 10^{-10} \text{ Gy/event}$
 - Yuya's number was 1.5×10^{-10} Gy/event They agree, what a coincidence!
- beam gas is negligible, at least for stable operation at 10^{-9} mbar
- At the beginning of the Pb/Sci section: The dose would be about 1.5 kGy/year, OR it is 0.5kGy/year
 - OR 0.18 Gy / hour
- You see the dose is quite concentrated in the center
 - Perhaps we could use scintillators for area behind the aperture obstacles
 - e.g. outer 10cm of the W/Si or Pb/Si section

dE/dt =1.E-3[GeV/g/ep]*1.E+6[ep/s]=**1.E+3 [GeV/g/s]**

The structure in FUN4ALL

- Shima's first implementation
- Shima's first study shows that one layer of crystal is perhaps enough

Scintillator dose rate and maximum dose

from CMS HGCAL TDR

- Dose constant: the dose with 1/e light yield
 - strongly depending on dose rate per unit time
 - slow dose gives more damage
- EIC ZDC:
 - 0.18 Gy / hr = 0.018 krad / hr
 - 5 kGy for 10 years
- The radiation rate is quite optimum
 - we should accept 1/e light yield after 10 years

Figure 2.10: Dose constant, D_c , versus dose rate, R, for both in situ measurements from CMS (boxes) and dedicated studies. Lines corresponding to $D_c = 3.6 \times R^{0.5}$, and $D_c = 2.4 \times R^{0.5}$ are shown. The in situ measurements refer to SCSN81, a PS based scintillator used in the endcaps of the present detector.

Reading light from plastic scintillator tiles + signal routing

- Shashlik or side readout by WLS fibers/plates would be difficult
 - WLS material is usually less rad-hard
 - Shashlik may still be an option since we can read light with small PMTs from behind
- Ideally we may like to use SiPM + scintillator tiles like for CALICE or HGCAL
 - easy cable routing (two low-voltage lines only)
 - need to see if it works for e.g. 5x5 cm tiles
 - 2mm thick may be difficult, may need
 5mm or even more
 - Pb:Sci ~= 5:1 would give good e/h value
 - SiPM may work for $10^{14} n_{eq}$: <u>https://arxiv.org/pdf/2106.12344.pdf</u>

Figure 2.11: Parameter drawing of typical square tiles developed by the CALICE Collaboration. Tiles for the CMS endcap calorimeter will be ring-sections rather than squares due to the geometry of the endcap.

Figure 2.12: Example of three CALICE $3 \times 3 \text{ cm}^2$ scintillator tiles mounted on a PCB that holds one SiPM per tile. The left two scintillators are unwrapped to show the SiPM within the small dome at the centre of the tile, while right-most tile is wrapped with reflective foil.

ハドロンカロリメーター (Pb+Sci) 部の中性子試験

- プラスチック自体 (TID) は大丈夫そう (p6)
- WLSを使うとすれば,その耐性(TID)は若干気になる
 - 横から WLS 板で読み出し ビーム付近からの何者かでやられるかも
 - Shashlik は少し安全か (後方から小型 PMT で読み出し)
- SiPM はなかなか厳しい
 - STAR のテスト: 10¹⁰ 1MeV n_{eq} で dark current が 10⁴ 倍, 10uA に (HPK 12572-015P)
 - 13360, 14160 シリーズははるかにノイズ少ない テストする価値はあるかも
 - ハンブルク大のテスト: KETEK
 <u>https://doi.org/10.1016/j.nima.2017.11.003</u>
 - 5e14 neg で 10nA くらい (???), テストする価値あるかも

クリスタル部の材質

- EM section の一番多いところ: 2.5kGy/year
 - 10年で 25kGy or 2.5Mrad
- Glass scintillator is OK for 10kGy
 - 安いらしい
 - ひょっとしたらいけるかも
 - 速い検出器の併用は、いずれにせよ必要
 全部を置き換えられるわけではない

Neutron yield and Si sensor tolerance

- 2.0×10^6 neutron/cm²/s = $2.0 \times 10^{14} n/cm^2$ for 10 years
 - Assuming that # of neutrons is not very different from # of 1MeV neutron equivalent
 - OK for conventional *p*-type sensors
 - we should be prepared to apply > 1000 V for bias

dn/dt =2.E+0[neut/cm²/ep]*1.E+6[ep/s]=**2.** E+6 [neut/cm²/s]

3960

z/cm

3980

3940

60 50

3860

3880 3900 3920

4060

4000 4020 4040

4080

Fine-grid sensors: where do we need them?

- 3mm x 3mm planned
- 3 layers in front, middle and end of the crystal layers
- We likely move to one crystal layer only
 - the third layer perhaps in the W+Si part
 - maybe at the end of the W+Si section, since this would give chance for neutron to give a signal
- Do we really need 3mm sensors for position?
 - Neutron needs ~0.5cm (0.15mrad) resolution only
 - Photon: we may like 1mm
 maybe even with the 1cm sensor + some weighting?

Neutron timing through silicon sensors

- 70ps measurement of timing would give big improvement for neutrons below 15 GeV thru ToF
- Dedicated Si sensor (e.g. LGAD)?
 - 35-70 ps according to ATLAS HGTD: 70ps is after irradiation
 - give signal to mip (avalanche gain: 20): good for neutrons
 - 1.3mm sensor: too fine for us
 - bigger sensors: worse timing due to capacitance
 - four layers for HGTD to measure mip at high efficiency
 - we perhaps do not high efficiency since anyhow not all the neutrons interact before the W+Si section
- Or, timing also via normal pad sensors with big signals?
 - 300um sensor with S/N > 30 (~ 10 mip) would give similarly good timing, in principle, according to CMS
 - Does it work for neutrons? Only a few MIPs, too small S/N in Si sensors?

Summary

- Plastic scintillators can be used for many part of the ZDC
 - light yield may be 1/e after 10 years, but would not completely degrade
 - light routing may be an issue: we may like to use SiPMs
 - need good SiPMs for NIEL if we go for CALICE-type readout
- Si sensors and readout chip also quite critical (> $10^{14}n_{eq}$) for radiation
- Could we reduce number of pads for cost?
- Neutron timing measurement would give ToF momentum measurement
 - good for resolution below 15 GeV, also good for calibrating calorimetry at low energy
 - may be useful also to remove stray particles when detecting 300 MeV photons