Updated template fitting and systematic uncertainties 22 Sep 2021 Minho Kim ### L2D distribution updated - After the photon energy is reconstructed by neutron energy conversion function, the peak at L2D = 20 in the photon event disappeared. - Since the photon energy is reconstructed by neutron one, photon events in high x_F increased. ### L2D distribution updated - The template fitting looks well proceeded only with the photon and hadron event. - However, though the photon peak disappeared, we can see some inconsistency around L2D = 20. #### Problem at template fitting - The inconsistency gets more serious at TS. - This means the previous peak around L2D = 20 is related with not only the photon events but also the neutron ones. #### L90 distribution comparison - Two neutron peaks can correspond to early and late shower development. - It seems that the ratio of two events is different between simulation and data due to their different energy distributions. - It is necessary to assign different weight for two types of shower developments. #### Two types of shower development We can separate the early and late shower developments by comparing the peak heights of 2nd and 3rd GSO bar layers. #### Improved template fitting - One can see the template fitting result has been improved. - For more precise energy reconstruction and unfolding, only the events of early shower development was counted with a L2D cut of L2D > 21. - Photon contamination is less than 5%. #### Photon asymmetry - \blacksquare Photon contamination already includes the non-zero asymmetry of π^0 . - If we count only the number of hadrons in the template fitting, we can be free from the photon asymmetry contamination. ## 2D (x_F, p_T) Bayesian unfolding - Single neutrons with randomized energy and direction were uniformly generated (flat distribution). - Number of iteration was done until the $\Delta \chi^2$ get smaller than 1, it was 18 for simulation (10 times higher statistics than data) and 27 for data. - Statistical fluctuation of each bin was considered as systematic uncertainty of unfolding. ## $\langle p_T \rangle$ estimation - \blacksquare x_F vs p_T map was projected to the p_T axis to estimate the overall p_T distribution. - The $\langle p_T \rangle$ was calculated using the Gaussian-based function which fit the p_T distribution. #### Background A_N subtraction - QGSJET-II sample "without photon" was unfolded by neutron flat distribution. - Fraction of unfolded to true neutron distribution of each bin was considered as the background fraction. - It was assumed that the background A_N was zero. ## Neutron A_N as a function of p_T As it was expected, the A_N increases as a function of p_T . ## Neutron A_N as a function of p_T - \blacksquare As it was expected, the A_N increases as a function of p_T. - Statistical uncertainty of unfolding is numerically $\sim 2 \text{ x/N}$. ## Neutron A_N as a function of p_T - \blacksquare As it was expected, the A_N increases as a function of p_T. - Statistical uncertainty of unfolding is numerically ~ 2 $x\sqrt{N}$. - The RHICf data looks consistent with previous results. $(\langle x_F \rangle_{PHENIX} = 0.7 \sim 0.8 \text{ and } \langle x_F \rangle_{RHICf} = 0.3 \sim 0.6)$ ## Neutron A_N as a function of x_F Increasing neutron A_N as a function of p_T is also shown in x_F plot because bigger x_F makes bigger p_T . ## Neutron A_N as a function of x_F - Increasing neutron A_N as a function of p_T is also shown in x_F plot because bigger x_F makes bigger p_T . - The RHICf data looks have bigger A_N than previous results. $(\langle p_T \rangle_{PHENIX} \langle 0.2 \text{ GeV/c} \text{ and } \langle p_T \rangle_{RHICf} \rangle 0.2 \text{ GeV/c})$