Updated template fitting and systematic uncertainties

22 Sep 2021 Minho Kim

L2D distribution updated

- After the photon energy is reconstructed by neutron energy conversion function, the peak at L2D = 20 in the photon event disappeared.
- Since the photon energy is reconstructed by neutron one, photon events in high x_F increased.

L2D distribution updated

- The template fitting looks well proceeded only with the photon and hadron event.
- However, though the photon peak disappeared, we can see some inconsistency around L2D = 20.

Problem at template fitting

- The inconsistency gets more serious at TS.
- This means the previous peak around L2D = 20 is related with not only the photon events but also the neutron ones.

L90 distribution comparison

- Two neutron peaks can correspond to early and late shower development.
- It seems that the ratio of two events is different between simulation and data due to their different energy distributions.
- It is necessary to assign different weight for two types of shower developments.

Two types of shower development

 We can separate the early and late shower developments by comparing the peak heights of 2nd and 3rd GSO bar layers.

Improved template fitting

- One can see the template fitting result has been improved.
- For more precise energy reconstruction and unfolding, only the events of early shower development was counted with a L2D cut of L2D > 21.
- Photon contamination is less than 5%.

Photon asymmetry

- \blacksquare Photon contamination already includes the non-zero asymmetry of π^0 .
- If we count only the number of hadrons in the template fitting, we can be free from the photon asymmetry contamination.

2D (x_F, p_T) Bayesian unfolding

- Single neutrons with randomized energy and direction were uniformly generated (flat distribution).
- Number of iteration was done until the $\Delta \chi^2$ get smaller than 1, it was 18 for simulation (10 times higher statistics than data) and 27 for data.
- Statistical fluctuation of each bin was considered as systematic uncertainty of unfolding.

$\langle p_T \rangle$ estimation

- \blacksquare x_F vs p_T map was projected to the p_T axis to estimate the overall p_T distribution.
- The $\langle p_T \rangle$ was calculated using the Gaussian-based function which fit the p_T distribution.

Background A_N subtraction

- QGSJET-II sample "without photon" was unfolded by neutron flat distribution.
- Fraction of unfolded to true neutron distribution of each bin was considered as the background fraction.
- It was assumed that the background A_N was zero.

Neutron A_N as a function of p_T

As it was expected, the A_N increases as a function of p_T .

Neutron A_N as a function of p_T

- \blacksquare As it was expected, the A_N increases as a function of p_T.
- Statistical uncertainty of unfolding is numerically $\sim 2 \text{ x/N}$.

Neutron A_N as a function of p_T

- \blacksquare As it was expected, the A_N increases as a function of p_T.
- Statistical uncertainty of unfolding is numerically ~ 2 $x\sqrt{N}$.
- The RHICf data looks consistent with previous results. $(\langle x_F \rangle_{PHENIX} = 0.7 \sim 0.8 \text{ and } \langle x_F \rangle_{RHICf} = 0.3 \sim 0.6)$

Neutron A_N as a function of x_F

Increasing neutron A_N as a function of p_T is also shown in x_F plot because bigger x_F makes bigger p_T .

Neutron A_N as a function of x_F

- Increasing neutron A_N as a function of p_T is also shown in x_F plot because bigger x_F makes bigger p_T .
- The RHICf data looks have bigger A_N than previous results. $(\langle p_T \rangle_{PHENIX} \langle 0.2 \text{ GeV/c} \text{ and } \langle p_T \rangle_{RHICf} \rangle 0.2 \text{ GeV/c})$