Photon analysis with 7 cm thick Crystal

Shima Shimizu (RIKEN/JSPS)

EIC_Japan meeting 5/Oct./2021

Pick-up from physics requirements

I still need to look in details in

https://docs.google.com/spreadsheets/d/1IWYx5hFsKXEDIjQgLV5qOZPBfxDNbCMOgzwptTndtTE/edit# gid=0

but pickups are:

- Tag O(100) MeV photons
 - >90 % efficiency
 - Energy resolution 20-30%
- Tag 20-40 GeV photons
 - 2 photons from pi0
 - Nominal distance of 2 photons: 14 cm. Position resolution: 2 cm
 - neutron + 2 photons, neutron + 3 photons
 - Position resolution: 0.5-1mm
 - Energy resolution
 - 35%/√E

Setup

EM calorimeter:

- 1 or 2 layers of 7 cm crystal
- 22 layers of W/SI

with Silicon Pixel layers inserted.

Note: Open issues/topics (not for today)

• 7 cm thickness may worsen the resolution due to less photons, but thicker crystal worsen the position resolution.

− Currently estimated as: 1.1 mm for 40 GeV photons. ← not enough.

- Material of crystal.
- Possible replacement of Silicon by Scintillator for the region outside of aperture.

Energy reconstruction

Crystal

- Clustering of EM crystal towers
 - Take a tower with E_{tower} > 15 MeV as a seed tower.
 - 3x3 towers with a seed as the center \rightarrow cluster
 - Cluster raw energy is $\sum_{3\times 3} E_{tower}$
 - Cluster raw energy is smeared based on $\frac{2.5\%}{\sqrt{E}} + 1\% \rightarrow$ "Reco." cluster energy
- On the 1st crystal layer (Crystal 0), a cluster with the highest energy is taken.
- On the 2nd crystal layer (Crystal 1), a cluster close to the cluster on the Crystal 0 is taken.
 Pixel 1
- 11x11 cells Rol is formed around (x, y) of Crystal 0 cluster. Energy deposit in Rol is taken.
 W/SI
- 9cm x 9cm Rol is formed around (x,y) of Crystal 0 cluster.
 - "Reco." energy = 82.7 * Energy sum in Rol.
- \rightarrow E_{Reco, total} = E_{Reco, crys.0} + E_{Reco, crys.1} + E_{Pix1} + E_{reco, W/SI}

Reco energy (E=0.1 ~ 1 GeV)

1 Crystal layer

Most of the energy measured in 1st Crystal layer.

Reco energy (E=10, 20, 40 GeV)

1 Crystal layer

Half ~ less than half of the photon energy is measured in the 1st Crystal layer (Crystal 0). All of the Crys.0, Crys.1, and W/SI contributes to the energy reconstruction for $E>\sim10$ GeV.

Tower energy distribution (E=20 GeV, 2 Crystals)

Tower Energy distribution (E = 100 MeV, 2 Crystals)

Cluster distribution (E=20GeV, 2 Crystals)

Number of clusters looks reasonable.

Use of 3x3 towers drops ~10% of energy on the 2nd Crystal layer (Crystal 1).

Cluster distribution (E=100MeV, 2 Crystals)

Crystal 0

Cluster finding looks reasonable.

Almost no cluster on the 2nd Crystal layer, but the most of the energy is on the 1st cluster.

Energy on Pixel 1 layer

- Rol = 11 ch x 11 ch (3.3cm x 3.3 cm)
- Rol is mostly for position measurement.
- ~0.1% of photon energy is deposited on Pix 1.

Energy in W/SI calorimeter

EW/SI Rol / EW/SI All

E_{W/SI Rol} / E_{W/SI All}

Energy in W/SI calorimeter

Setting: 2 Crystal layers

Correction for energy outside of RoI may be needed, but is not straightforward.

Energy in Pb/SI

There is energy leakage to Pb/SI layers, but they are not significant for most of the events.

For events with leakage:

• 5 MeV corresponds to ~ 2 GeV* = 5% of E_{v}

Reconstructed energy

• Fit on each E_{reco} / E_{photon} distribution

Summary of fit results

Both cases have better resolution than required.

• 1 Crystal layer will double the size of resolution, but still better than required.

Impact of resolution of Crystal

- The current setting includes:
 - No readout system
 - Resolution of crystal is assumed as ^{2.5%}/_{√E} + 1%.
 ← Based on CMS and PANDA: ~20 cm crystals

→ Compared to
$$\frac{5\%}{\sqrt{E}}$$
 + 1%

Doubled resolution gives:

- Less impact on 1 Crystal than 2 Crystals.
- In any case, the impact is not large.
 - Low E_{v} : still less than 0.2
 - 20 GeV: difference is minor.

Summary and outlook

- Current design in Fun4All:
 - 10 cm Crystal x 2
 - 42 layers of W/SI
 - SI layers: 3 mm x 3mm pixel layers or 1cm x 1cm pad layers.
- Estimation done as:
 - Photon energy resolution is well below physics requirement.
 - With 7 cm Crystal, position resolution is 1.1 / 1.5 mm for 40 /20 GeV photons.

 \leftarrow larger than physics requirement.

→

- 7 cm crystal is preferred to 10 cm.
- W/SI layers can be reduced to 22 layers from 42 layers.

* 6 cm reduction in Crystal + 11 cm reduction in W/SI = 17 cm reduction.

• Better to think of finer pixel silicon layer for better position resolution?

Backup

x_{Pix 1} [cm]

Photon position reconstruction on Pixel 1

Best resolution: 1.1 mm for

- 40 GeV photon.
- 7 cm thickness.
- in 3.3 cm square. (11 x 11 chns)

- 20 GeV \rightarrow 1.5 mm
- 15 cm thickness \rightarrow 3.3 mm
- 6.3 cm square → 1.5 mm (21 x 21 chns)

x_{Pix 1} [cm]

Transverse spread of energy deposits

with 7 cm x 2 Crystals

• Energy weighted sigma are checked.

- First 5 layers will be looked in details later.
- Difference of shower width is visible in Si/W layers (Layer ID > 5).
- Photon shower is fading around Layer ID 20-30.

Cluster distribution (E=300 MeV)

