Improved template fitting

07 Oct 2021 Minho Kim

Problem at template fitting

- This event sample is the one where a cut condition of L90 \langle 35 is applied.
- There is inconsistency in the hadronic part.
- This inconsistency gets more serious at TS.

Two types of shower development

 We can separate the early and late shower developments by comparing the peak heights of 2nd and 3rd GSO bar layers.

L90 distribution comparison

- Two neutron peaks can correspond to early and late shower development.
- It seems that the ratio of two events is different between simulation and data due to their different energy distributions.
- It is necessary to assign different weight for two types of shower developments.

Improved template fitting

- One can see the template fitting result has been improved.
- For more precise energy reconstruction and unfolding, only the events of early shower development was counted with a L2D cut of L2D > 21.
- More detailed study is necessary to confirm if this shower development separation is reasonable.

Uncertainty of unfolding

- Number of iteration was set (= N) as its corresponding $\Delta \chi^2$ starts smaller than 1.
- Fluctuation of the unfolded counts from the number of iteration from N to N+10 was assigned to the systematic uncertainty by the unfolding.

Photon asymmetry

- \blacksquare Photon contamination already includes the asymmetry of the π^0 .
- With the template fitting, if we count only the number of hadrons, we can be free from the photon asymmetry contamination.
- However, how to deal with the background photon A_N is under consider-ration yet.

A_Ns of early shower and both

- Though the energy reconstruction of the late shower event is worse than the early one, it seems that there is no critical problem when estimating the A_N .
- Some differences between the two data points is being studied now.

Neutron A_N as a function of p_T

- \blacksquare As it was expected, the A_N increases as a function of p_T .
- The RHICf data looks consistent with previous results. $(\langle x_F \rangle_{PHENIX} = 0.7 \sim 0.8 \text{ and } \langle x_F \rangle_{RHICf} = 0.3 \sim 0.6)$
- \blacksquare The neutron A_N will be estimated more comprehensively soon.