sPHENIX実験における中間飛跡検出器INTTの 宇宙線を用いた検出効率の研究

奈良女子大学理学部数物科学科物理学コース B4 高エネルギー物理学研究室 西森 早紀子 卒業研究発表会 2021年3月1日

- 研究背景
- ・FPHXチップへの供給電圧の見積もり
- ・宇宙線を用いたINTTの検出効率測定
- ・まとめ

研究背景

RHIC-sPHENIX実験

- アメリカブルックヘブン国立研究所(BNL)
 RHIC(Relativistic Heavy Ion Collider)加速器での実験
- 稼働予定期間:2023年~

- 2010年から2016年に稼働していたPHENIX実験を高度化
- 衝突で生じるジェット現象やウプシロン粒子を測定し、クォークグルーオンプラズマ (QGP)の性質を決定することを目的としている。
- 衝突エネルギー:200GeV
- 衝突核子:金原子核

QGPとは

クォークとグルーオンからなるプラズマ状態のこと。 ビックバンから10⁻⁵秒後に宇宙に存在していたと考えられる。

中間飛跡検出器INTT

- INTT : Intermediate Silicon Strip Track detector of the Tracking system
- sPHENIX実験で用いる飛跡検出器の 1つ
- 樽状の2層のシリコン検出器(参考:
 図)
- ビームパイプから6~12cmに位置する
- 時間分解能が高く、飛跡再構成など において重要な役割を担う

INTT用シリコンセンサ-

 Sensor Type B
 Sensor Type A

 chip1 chip2 chip3 chip4 chip5 chip6 chip7 chip8 chip9 chip10 chip11 chip12 chip13 rPHX Chip
 FPHX Chip

 0
 Image: Sensor Type A
 Silicon sensor

 127
 Image: Sensor Type A
 Silicon sensor

 127
 Image: Sensor Type A
 FPHX Chip

 0
 Image: Sensor Type A
 FPHX Chip

 0
 Image: Sensor Type A
 FPHX Chip

 127
 Image: Sensor Type A
 FPHX Chip

 0
 Image: Sensor Type A
 FPHX Chip

- シリコンストリップセンサー
 - 78µmピッチ、320µm厚のストリップ128個で構成されている
- シリコンセンサーモジュール
 - 26個のシリコンストリップセンサーと26個の読み出しチップ(FPHXチップ)で構成
 - TypeAには128×16ch、TypeBには128×10chある。全チャンネル数は3328chである。
- FPHXチップ
 - アナログ信号をデジタル信号に変換し、ROCに転送する
 - 1つのFPHXチップが128チャンネル分(1センサー分)を担う
 - 1チャンネルあたり3bitのADCを持つ

FPHXチップへの 供給電圧の見積もり

概要と目的

- FPHX chipに必要な電圧は2.5Vである。
 - →供給電圧の許容範囲を知りたい。
- ROCのregulator(2.5V出力): FPHX chipに電力供給する。
- ROC~chip間の電圧降下によりFPHX chipに2.5Vを供給できない。
 →chipの動作を確認する

2021/3/1

卒業研究発表会 西森早紀子

供給電圧の計算結果

Regulatorへの供給電圧 が3V以上は、FPHX chipでの供給電圧の計算 結果はほぼ一定。
3Vより下げると、減少 していく。

2021/3/1

卒業研究発表会 西森早紀子

キャリブレーションテスト

- キャリブレーションテストとは、ROC(読み出し基板)で発生させたテスト パルスをINTTのFPHX chipに送り、その信号が正しくROCに戻り、読み こむことができるのかを調べるテストである。
- これを行うことで、テストベンチ全体の動作状況を確認できる。

正常な場合のキャリブレーションテスト結果

ADC	DAC value
0	20
1	25
2	30
3	35
4	40
5	45
6	50
7	55

DAC0=20で測定 閾値が作用している

右のグラフでAmpl=20でADC=7のノイズ があるが、どのChipにも見られるノイズ であるので、今回は無視して考える。

2021/01/05

研究室MT

供給電圧とキャリブレーションテスト

PWR_SUPPLY_V	動作状況
3.6	正常
3.5	正常
3.4	正常
3.3	正常
3.2	正常
3.1	正常
3.05	chip5:ノイズ多め
3.03	正常
3.02	chip5,9:データ少なめ
3	chip1,5,9:ノイズ多め、データ少なめ
2.95	chip1,9:データ少ない、chip5:データ少なめ
	chip1,9:データかなり少ない、chip5:データ少ない、
2.9	chip4,7:データ少なめ
0.05	chip1,9:データなし、chip3,4,5,7:データ少ない、
2.85	chip13:データ少なめ
2.8	chip1,9:データなし、chip3,4,5,7,13:データほぽなし

供給電圧が3.1Vより下がると正常に 動作しにくくなる。 普段は供給電圧3.6Vで測定している ため、問題なし。

まとめと方針

- FPHX chipへの供給電圧を計算で見積もることができた。
- 実際の実験では今回の実験より配線長が長くなるので、
 さらに電圧降下すると考えられる。

→regulatorをより出力電圧が高いものに変える必要がある。

宇宙線を用いた INTTの検出効率測定

概要と目的

- INTT用シリコンセンサーの検出効率はほぼ100%であると考えられている。 しかし先行研究(鈴木 2019)では、約96%という結果になった。
- そこで、より細かく検出効率を求めるためのセットアップを考え、検出効率を測定した。

L0の結果が先行研究(鈴木 2019)での検出効率の結果。

検出効率が約96%である。

宇宙線

- 宇宙空間を高エネルギーで動き回る粒子の総称
- 宇宙空間では1次宇宙線(ほとんど陽子)、地表付近では2次宇宙線(ほとんどミューオン)
 - 1分毎に約1個/cm^{*}
 - ミューオンの典型的なエネルギーは1GeV

2021/3/1

宇宙線測定をする際は外部トリガーモードで測定を行う。

•外部トリガーにはシンチレーターを2個使用。

INTTとシンチレーターの設置状況

前から見た図

横から見た図

NIMのロジックダイアグラム

卒業研究発表会 西森早紀子

セットアップ状況

NIMやCAMACの接続状況 自分で配線を行った

NIMの拡大図

NIM

宇宙線測定時のDAC値の設定

• 宇宙線測定の際のDAC値設定は以下のようにする。

西森早紀子

• Thresholdの計算 Threshold [mV] = 210 [mV] + 4 [mV] × DACvalue

ADC	DAC value	Threshold[mV]
0	20	290
1	23	302
2	60	450
3	98	602
4	135	750
5	173	902
6	210	1050
7	248	1202 六举开灾祸

宇宙線が1GeVのミューオンなら、 出力波高は 580±10 [mV]と求められる。 よってこのADC設定ではADC=2で検出される。

データ収集中の状況

INTT event とは 外部トリガーにヒットがあったイベントからノイ ズを取り除いたもののうち、INTT ヘヒットが確 認できたもの。

590 2021223_113944266 data 0x215959, chip_id 43 chan 4 data 0x215d59, chip_id 43 chan 4 data 0x215d59, chip_id 43 chan 4 data 0x21dcf3, chip_id 30 chan 11 data 0x215f5a, chip_id 43 chan 4 data 0x216159, chip_id 43 chan 4 data 0x215b58, chip_id 43 chan 4 data 0x225b58, chip_id 43 chan 4 data 0x225b58, chip_id 43 chan 4 data 0x225b58, chip_id 43 chan 4	158 44, adc 1, ampl 46, adc 1, ampl 10, adc 3, ampl 10, adc 3, ampl 47, adc 2, ampl 18, adc 1, ampl 15, adc 0, ampl 15, adc 0, ampl	196 0, bco 2947; 0, bco 2947;	317 3, time 11:3 3, time 11:3 3, time 11:3 3, time 11:3 3, time 11:3 4, time 11:3	207 19:06 19:06 9:06 9:06 9:06 9:06 9:06 9:06	200	185	0	422	1077	}	1トリガーイベントにつき7つのINTTヒット →INTT event
591 2021223_114054489 data 0x1bfb4b, chip_id 41 chan 12 data 0x1bfb4b, chip_id 1 chan data 0x1b0008, chip_id 1 chan data 0x1b0208, chip_id 1 chan 7 data 0x1b8c08, chip_id 1 chan 12 data 0x1cfb4b, chip_id 1 chan 7 INTT events: 1091 is taken.	188 25, adc 3, ampl 0, adc 0, ampl 1, adc 0, ampl 0, adc 0, ampl 25, adc 3, ampl 0, adc 0, ampl	195 0, bco 5378 0, bco 5378 0, bco 5378 0, bco 5378 0, bco 5378 0, bco 53788 0, bco 53788	298 7, time 11:3 7, time 11:3 7, time 11:3 7, time 11:3 8, time 11:3 8, time 11:3	206 9:44 9:44 9:44 9:44 9:44 9:44 9:44	205	194	182	216	870	}	1トリガーイベントにつき6つのINTTヒット →INTT event
592 2021223_114615150 data 0x6ef55a, chip_id 43 chan 12 data 0x6e64f1, chip_id 30 chan 5 data 0x6e66f1, chip_id 30 chan 5 data 0x6e6759, chip_id 43 chan 12 data 0x6e68f2, chip_id 30 chan 5 INTT events: 1096 is taken.	158 2, adc 2, ampl 0, adc 1, ampl 1, adc 1, ampl 3, adc 1, ampl 2, adc 2, ampl	188 0, bco 45934 0, bco 45934 0, bco 45934 0, bco 45934 0, bco 45934	303 , time 11:4 , time 11:4 , time 11:4 , time 11:4 , time 11:4	206 0:54 0:54 0:54 0:54 0:54	202	189	0	0	578	}	1トリガーイベントにつき5つのINTTヒット →INTT event
593 2021223_114755437 INTT events: 1096 is taken.	181	198	341	207	199	189	74	107	761	7	1トリガーイベントにつきINTTヒットなし →INTT eventがない
594 2021223_114913580 data 0x20f51d, chip_id 35 chan 12 data 0x20f71f, chip_id 35 chan 12 data 0x20f71f, chip_id 35 chan 12 data 0x20f918, chip_id 35 chan 12 INTT events: 1099 is taken.	180 2, adc 5, amol 3, adc 7, amol 4, adc 0, amol 4, adc 0, amol	181), bco 33184), bco 33184), bco 33184), bco 33184	313 , time 11:4 , time 11:4 , time 11:4	204 7:55 7:55 7:55	206	194	0	373	1027	}	1トリガーイベントにつき3つのINTTヒット →INTT event

検出効率は「外部トリガーのイベントの数(trigger event)」と 「INTTにヒットがあるイベントの数(INTT event)」の比である。

ADCとTDCの分布結果

INTTセンサーを通過した宇宙線を選びたい →ピーク部分のみ選択

検出効率を求める際のカットを決める

ピークが1つのものは範囲を決定することができる

検出効率を求める際のカットを決める

下のPMT:TDC分布カットの決定

2021/3/1

スルーイングについて

 波高が低いパルス(ADC値が小さ いパルス)のTDCの値が大きくな る現象。

下のPMT:TDC分布カットの決定

2021/3/1

以上の内容を考慮して カットを決定

trigger event

+0.0107

-0.0119

camac_tdc[5]

下のTrigのADC分布について

下のPMTのADCのカットを 青の範囲(320~)とする

卒業研究発表会 西森早紀子

検出効率を求める際のカット条件(2)

全てのカットを決めた

卒業研究発表会 西森早紀子

2021/3/1

カット条件(2)を適用した検出効率

Efficiency

となる。

まとめと今後の方針

- DAQにトリガー情報を追加することができた。
- ビームテスト時と同程度の検出効率が得られた。
- データ数が少ないので測定を今後も続け、データ数を増やす。
- ●垂直に通り抜ける粒子を選ぶことで検出効率が91%→96%となったことを踏まえ、シンチレーターの置き方を工夫することで、より高い検出効率が求められそうである。
 - ・シンチレーター3つを使って測定する
 - 2つのシンチレーターの距離を離す
 - INTT複数台で測定対象とトリガーをつくる

バックアップ

供給電圧測定結果(表付き)

		NWU(12/8)		
PWR_SUPPLY_V	PWR_SUPPLY_Current	$\Delta V (= PWR_SUPPLY_Current * NTU_R_AVE)$	V_out(1877)	FPHX_V
3.6	0.53	0.16536	2.477	2.31164
3.55	0.53	0.16536	2.477	2.31164
3.5	0.53	0.16536	2.477	2.31164
3.45	0.53	0.16536	2.477	2.31164
3.4	0.53	0.16536	2.477	2.31164
3.35	0.53	0.16536	2.477	2.31164
3.3	0.53	0.16536	2.477	2.31164
3.25	0.53	0.16536	2.477	2.31164
3.2	0.53	0.16536	2.477	2.31164
3.15	0.53	0.16536	2.4765	2.31114
3.1	0.53	0.16536	2.476	2.31064
3.05	0.52	0.16224	2.4735	2.31126
3	0.52	0.16224	2.471	2.30876
2.95	0.52	0.16224	2.4105	2.24826
2.9	0.5	0.156	2.35	2.194
2.85	0.49	0.15288	2.3125	2.15962
2.8	0.48	0.14976	2.275	2.12524
2.75	0.47	0.14664	2.239	2.09236
2.7	0.45	0.1404	2.203	2.0626
2.65	0.44	0.13728	2.162	2.02472
2.6	0.43	0.13416	2.121	1.98684

FPHX_V vs POWER SUPPLY VOLTAGE

宇宙線エネルギーの計算

- 1GeVのµ粒子でのエネルギー損失:約1.15[MeV/g•cm^-2]
- シリコン密度:2.33[g/cm^3]
- 単位体積あたりのシリコン中でMIPが失うエネルギー:E[MeV]

 $E[MeV] = 1.15 \left[\frac{MeV}{g \cdot cm^{-2}} \right] \times 0.032 [cm] \times 2.33 \left[\frac{g}{cm^{3}} \right] = 0.0857 [MeV]$

• 1ストリップを通過するときに生成される電子正孔対の数:N

$$N = \frac{E[MeV]}{3.62[eV/e対]} = 23670[個] (1つの電子正孔対生成に必要なエネルギー: 3.62[eV])$$

電荷に変換

 $C[fC] = N \times 1.6 \times 10^{-19}[C] = 3.79[fC]$

・ パルス波高を求める(増幅率100[mV/fC]、オフセット200±10[mV]) Pulse *height*[mV] = $100[^{mV}/_{fC}] \times 3.79[fC] + 200 \pm 10[mV] = 580 \pm 10[mV]$

スルーイングについて

波高が低いパルス(ADC値が小さいパルス)のTDCの値が大きくなる現象。

Calculation:

The lower boundary of the Clopper-Pearson interval is the "exact" inversion of the test:

ROOT TEfficiency

$$\begin{split} P(x \geq passed; total) &= \frac{1 - level}{2} \\ P(x \geq passed; total) &= 1 - P(x \leq passed - 1; total) \\ &= 1 - \frac{1}{norm} * \int_{0}^{1 - \epsilon} t^{total - passed} (1 - t)^{passed - 1} dt \\ &= 1 - \frac{1}{norm} * \int_{\epsilon}^{1} t^{passed - 1} (1 - t)^{total - passed} dt \\ &= \frac{1}{norm} * \int_{0}^{\epsilon} t^{passed - 1} (1 - t)^{total - passed} dt \\ &= I_{\epsilon}(passed, total - passed + 1) \end{split}$$

The lower boundary is therefore given by the $\frac{1-level}{2}$ quantile of the beta distribution.

The upper boundary of the Clopper-Pearson interval is the "exact" inversion of the test:

$$\begin{split} P(x \leq passed; total) &= \frac{1 - level}{2} \\ P(x \leq passed; total) &= \frac{1}{norm} * \int_{0}^{1-\epsilon} t^{total-passed-1} (1-t)^{passed} dt \\ &= \frac{1}{norm} * \int_{\epsilon}^{1} t^{passed} (1-t)^{total-passed-1} dt \\ &= 1 - \frac{1}{norm} * \int_{0}^{\epsilon} t^{passed} (1-t)^{total-passed-1} dt \\ &\Rightarrow 1 - \frac{1 - level}{2} = \frac{1}{norm} * \int_{0}^{\epsilon} t^{passed} (1-t)^{total-passed-1} dt \\ &= \frac{1 + level}{2} = I_{\epsilon}(passed + 1, total - passed) \end{split}$$

The upper boundary is therefore given by the $\frac{1+level}{2}$ quantile of the beta distribution.

Note: The connection between the binomial distribution and the regularized incomplete beta function $I_{\varepsilon}(\alpha, \beta)$ has been used. 卒業研究発表会 西森早紀子

Definition at line 1814 of file TEfficiency.cxx.

2021/3/1

43

